The Vector Space of all ordered n-tuples over a field F

The Vector Space of all ordered n-tuples over a field F.

Solution:

Let F be a field. An ordered set α = (a_1, a_2, a_3, . . ., a_n) of n element of F is called an n- tuple over F. Let V be the totality of all ordered n-tuples over F i.e., Let

V = {(a_1, a_2, a_3, . . ., a_n): a_1, a_2, a_3, . . . a_n \in F}.

Now we shall give a vector space structure to V over the field F. For this we define equality of two n-tuples, addition of two n-tupes and multiplication of an n-tuple by a scalar as follows:

Equality of two n-tuples. Two element

α = (a_1, a_2, a_3, . . ., a_n)

and  β = (b_1, b_2, b_3, . . ., b_n)

of V are said to be equal if and only if a_i = b_i for each i = 1, 2, .  .  ., n.

Addition composition in V. We define

α + β = (a_1 + b_1, a_2 + b_2, . . ., a_n + b_n)

∀α = (a_1, a_2, a_3, . . ., a_n), β = (ab_1, b_2, b_3, . . ., b_n) ∈ V

Since a_1 + b_1, a_2 + b_2, .  .  ., a_n + b_n are all elements of F, therefore α + β ∈(a_1, a_2, a_3, . . ., a_n) and thus V is closed with respect to addition on n-tuples.

Scalar multiplication in V over F. We define

aα = (aa_1, aa_2, .  .  ., aa_n) ∀a∈ F, ∀ α = (a_1, a_2, a_3, . . ., a_n) ∈ V.

Since aa_1, aa_2, .  .  ., aa_n are all elements of F, therefore aα ∈ (a_1, a_2, a_3, . . ., a_n) and thus V is closed with respect to scalar multiplication.

Now we shall see that V is a vector space for theses two composition.

Associative of addition in V. We have

(a_1, a_2, a_3, . . ., a_n) + [(b_1, b_2, b_3, . . ., b_n) + (c_1, c_2, c_3, . . ., c_n)]

= (a_1, a_2, a_3, . . ., a_n) + (a_1+ b_1, a_2+b_2, a_3+b_3, . . ., a_n+b_n)

(a_1 + [b_1+c_1], a_2 + [b_2+c_2], .  .  ., a_n+[b_n+c_n])

([a_1+b_1]+c_1,[a_2+b_2]+c_2, .  .  ., [a_n+b_n]+c_n)

= (a_1+b_1,a_2+b_2, . . . a_n+b_n)+(c_1+c_2, .  .  . , c_n)

= [(a_1, a_2, a_3, . . ., a_n)+(b_1, b_2, b_3, . . ., b_n)]+(c_1, c_2, c_3, . . ., c_n)

Commutativity of addition in V. We have

(a_1, a_2, a_3, . . ., a_n)+(b_1, b_2, b_3, . . ., b_n)

= (a_1+b_1, a_2+b_2, a_3+b_3, . . ., a_n+b_n)

=(b_1+a_1, b_2+a_2, b_3+a_3, . . ., b_n+a_n)

= (b_1, b_2, b_3, . . ., b_n)+(a_1, a_2, a_3, . . ., a_n)

Existence of additive inverse of each element of V. If

(0, 0, .  .  . 0) \in V also if (a_1,a_2, .  .  . a_n) \in V

(a_1,a_2, .  .  . a_n) + (0, 0, .  .  . 0) = (a_1 + 0, a_2 + 0, .  .  ., a_n + 0)

= (a_1, a_ 2, .  .  ., a_n)

∴ (0, 0, . . . 0) is the additive identity in V.

Existence of additive inverse of each element of V. If

(a_1, a_2, .  .  . ,a_n) \in V then (-a_1, -a_2,  .  .  .,-a_n) \in V.

Also we have (-a_1, -a_2,  .  .  .,-a_n) + (a_1, a_2, .  .  . ,a_n)

= (-a_1+a_1, -a_2+a_2, .  .  . ,-a_n+a_n)

= (0, 0, .  .  ., 0)

(-a_1, -a_2,  .  .  .,-a_n) is the additive inverse of (a_1, a_2,  .  .  .,a_n).

Thus V is an abelian group with respect to addition. further we observe that

1. If a ∈ F and α = (a_1, a_2,  .  .  .,a_n), β = (b_1, b_2,  .  .  .,b_n) \in V, then

a(α + β) = a(a_1+b_1, a_2+b_2, a_3+b_3, . . ., a_n+b_n)

= (a[a_1+b_1], a[a_2 + b_2],  .  .  ., a[a_n + b_n])

= (aa_1 + ab_1, aa_2+ab_2,  .  .  ., aa_n + ab_n)

= (aa_1, aa_2, .  .  . aa_n)+(ab_1, ab_2, .  .  ., ab_n)

= a(a_1, a_2, .  .  . a_n) + a(b_1, b_2, .  .  .,b_n) = aα + aβ

2. If a, b ∈ F and α = (a_1, a_2, .  .  ., a_n) \in V, then

(a + b)α = ([a+b]a_1,[a+b]a_2, .  .  .,[a+b]a_n)

=(aa_1 + ba_1, aa_2 + ba_2, .  .  ., aa_n + ba_n)

= (aa_1, aa_2,  .  . ., aa_n) + (ba_1, ba_2,  .  .  .,ba_n)

=a(a_1, a_2, .  .  ., a_n)+ b(a_1, a_2, .  .  ., a_n) = aα + bβ.

3. If a, b ∈ F and α = (a_1, a_2, .  .  ., a_n) \in V, then

(ab)α = ([ab}a_1, [ab]a_2, .  .  ., [ab]a_n)

= (a[ba_1], a[ba_2],  .  .  . a[ba_n])

= a(ba_1, ba_2, .  .  ., ba_n) =a[b(a_1, a_2, .  .  ., a_n)]

= a(bα).

4. If 1 is the unity element of F and  α = (a_1, a_2, .  .  ., a_n) \in V, then

1α = (1a_1, 1a_2,  .  .  ., 1a_n)

=(a_1, a_2, .  .  ., a_n) = α,

Hence V is a vector space over F. The vector space of all ordered n-tuples over F will be denoted by V_n(F). Sometimes we also denote it by F^n or F^n(F). Here the zero vector i.e., 0 is the n-tuple (0, 0, .  .  ., 0)

Question:1: A field K can be  regarded as a vector space over any subfield F of K

Definition: ⇒Vector Space and Property of Vector Space

 

 

Leave a Comment