Exercise 7.2 ncert solutions maths class 11

Exercise 7.2(Permutations and Combinations)

Exercise 7.2 ncert solutions maths class 11

Question 1: Evaluate

(i) 8!

(ii) 4! – 3!

Solution: (i) Given  8!

We know that 8! = 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1

= 40320

(ii) Given 4!-3!

4! – 3! = (4 × 3!) – 3!

= 3! (4-1)

= 3 × 2 × 1 × 3

= 18

Question 2: Is 3! + 4! = 7!?

Solution:  LHS = 3! + 4!

3! + 4! = (3 × 2 × 1) + (4 × 3 × 2 × 1)

= 6 + 24

= 30

Taking R.H.S.

7! = 7 × 6 × 5 × 4 × 3 × 2 × 1 = 5040

Therefore LHS ≠ RHS

Therefore 3! + 4! ≠ 7!

3. Compute \dfrac{8!}{6!\times 2!}

Solution: Given \dfrac{8!}{6!\times 2!}

\Rightarrow \dfrac{8\times 7 \times 6!}{6!\times 2\times 1}

\Rightarrow \dfrac{8\times 7}{2}

\Rightarrow 28

4. If  \frac{1}{6!}+\frac{1}{7!}=\frac{x}{8!}, find x.

Solution: Given, 

\frac{1}{6!}+\frac{1}{7!}=\frac{x}{8!}

\Rightarrow \frac{1}{6!}+\frac{1}{7\times 6!}=\frac{x}{8\times 7!}

\Rightarrow \frac{1}{6!}(1+\frac{1}{7})= \frac{x}{8\times 7\times 6!}

\Rightarrow \frac{1}{6!}\times \frac{8}{7}= \frac{x}{8\times 7\times 6!}

\Rightarrow 8 = \frac{x}{8}

\Rightarrow x = 64

5. Evaluate \dfrac{n!}{(n-r)!},

When
(i) n = 6, r = 2
(ii) n = 9, r = 5

Solution: (i) Given n = 6 and r = 2

Putting the value of n and r we get

\dfrac{6!}{(6-2)!}

\Rightarrow \dfrac{6!}{4!}

\Rightarrow \dfrac{6\times 5\times 4!}{4!}

\Rightarrow 6\times 5

\Rightarrow 30

(i) Given n = 9 and r = 5

Putting the value of n and r we get

\dfrac{9!}{(9-5)!}

\Rightarrow \dfrac{9!}{4!}

\Rightarrow \dfrac{9\times 8\times 7\times 6 \times 5 \times 4!}{4!}

\Rightarrow 9\times 8\times 7\times 6 \times 5

\Rightarrow 15120

 

Chapter 7 Permutation and Combination Ncert math solution

Exercise 7.1 Permutation and Combination Ncert math solution

Exercise 7.2 Permutation and Combination Ncert math solution

Exercise 7.3 Permutation and Combination Ncert math solution

gmath.in

Leave a Comment