Case study problem vector 1 chapter 10 class 12

Spread the love

Case study Chapter 10 (Vectors)

Solar panels have to be installed carefully so that the tilt of the roof, and the direction to the sun , produce the largest possible electrical power in the solar panals.(Case study problem vector 1)

A surveyor uses his instrument to determine the co-ordinates of the four corners of a roof where solar panels are to

be mounted. In the picture, suppose the points are labelled counter clockwise from the roof corner nearest to the

camera in units of meters P_1(6, 8, 4),P_2(21, 8, 4),P_3(21, 16, 10) and P_4(6, 16, 10).

Based on the above information answer the following question.

(i) Find the components to the two edge vectors defined by \vec{A} = \vec{OP_2}-\vec{OP_1} and \vec{B} =  \vec{OP_4}-\vec{OP_1} ?

(ii) (a) Find the magnitudes of the vectors \vec{A} and \vec{B}.

(b) Find the components to the vectors \vec{N}, perpendicular to \vec{A} and \vec{B} and the surface of the roof.

Solution: Given points are P_1(6, 8, 4),P_2(21, 8, 4),P_3(21, 16, 10) and P_4(6, 16, 10).

(i) We have,

\vec{A} = \vec{OP_2}-\vec{OP_1}

= (21\vec{i}+8\vec{j}+4\vec{k})- (6\vec{i}+8\vec{j}+4\vec{k})

\Rightarrow \vec{A} = (15\vec{i}+0\vec{j}+0\vec{k})

Components of vector A are 15, 0 , 0

and \vec{B} = \vec{OP_4}-\vec{OP_1}

= (6\vec{i}+16\vec{j}+10\vec{k})- (6\vec{i}+8\vec{j}+4\vec{k})

\Rightarrow \vec{B} = (0\vec{i}+8\vec{j}+6\vec{k})

Components of vector B are 0, 8 , 6.

(ii) (a) We have

|A| = \sqrt{(15)^2+(0)^2+(0)^2} = 15 units

|B| = \sqrt{(0)^2+(8)^2+(6)^2} = 10 units

(b) We have,

\vec{N} = \vec{A}\times \vec{B}

= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\15 & 0 & 0 \\0 & 8 & 6\end{vmatrix}

= \vec{i}(0-0)-\vec{j}(90-0)\vec{k}(120-0)

= 0\vec{i}-90\vec{j}+120\vec{k}

Its components are 0 ,-90, 120

2. Read the following and answer the question:

A class XII student appearing for a competitive examination was asked to attempt the following question.

Let \vec{a},\vec{b} and \vec{c} be three non zero vectors.

(i) If \vec{a} and \vec{b} are such that |\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|

(a) a\perp b                 (b) \vec{a}||\vec{b}

(c) \vec{a}=\vec{b}   (d) None of these

(ii) If \vec{a}=\hat{i}-2\hat{j},\vec{b}=2\vec{i}+\vec{j}+3\vec{k} then evaluate (2\vec{a}+\vec{b  [(\vec{a}+\vec{b})\times (\vec{a}-2\vec{b})]

(a) 0                           (b) 4

(c) 3                           (d) 2

(iii) If \vec{a} and \vec{b} are unit vectors and \theta be the angle between them then |\vec{a}-\vec{b}| is

(a) \sin\frac{\theta}{2} (b) 2\sin\frac{\theta}{2}

(c) 2\cos\frac{\theta}{2} (d) \cos\frac{\theta}{2}

(iv) Let \vec{a},\vec{b} and \vec{c} be unit vectors such that \vec{a}.\vec{b}=\vec{a}.\vec{c}=0 and angle

between \vec{b} and \vec{c} is \frac{\pi}{6} then \vec{a}=

(a) 2(\vec{b}\times \vec{c})             (b) -2(\vec{b}\times \vec{c})

(c) \pm2(\vec{b}\times \vec{c})     (d) 2(\vec{b}\pm\vec{c})

(v) The area of parallelogram formed by \vec{a} = \hat{i}-2\hat{j} and \vec{b}=2\hat{i}+\hat{j}+3\hat{k} as

diagonals is

(a) 70                                            (b) 35

(c) \frac{\sqrt{70}}{2}       (d) \sqrt{70}

Solution:(i) Answer (a)

Given, |\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|

\Rightarrow |\vec{a}+\vec{b}|^2=|\vec{a}-\vec{b}|^2

\Rightarrow |\vec{a}|^2+|\vec{b}|^2+2\vec{a}.\vec{b}=|\vec{a}|^2+|\vec{b}|^2-2\vec{a}.\vec{b}

\Rightarrow 4\vec{a}.\vec{b}=0

\Rightarrow \vec{a}.\vec{b}= 0

\Rightarrow |\vec{a}||\vec{b}|\cos\theta=0

\Rightarrow \cos\theta = 0

\Rightarrow \theta = \frac{\pi}{2}

\therefore \vec{a}\perp \vec{b} = 0

(ii) Answer (a)

\vec{a}=\hat{i}-2\hat{j},\vec{b}=2\vec{a}+\vec{j}+3\vec{k}

\therefore 2\vec{a}+\vec{b} = 2\hat{i}-4\hat{j}+2\vec{i}+\vec{j}+3\vec{k}

= 4\vec{i}+3\vec{j}+3\vec{k}

\vec{a}+\vec{b}=\hat{i}-2\hat{j}+2\vec{i}+\vec{j}+3\vec{k}

= 3\vec{i}-\vec{j}+3\vec{k}

And
\vec{a}-2\vec{b} = (\hat{i}-2\hat{j})-2(2\vec{i}+\vec{j}+3\vec{k})

= \hat{i}-2\hat{j}-4\vec{i}-2\vec{j}-6\vec{k}

= -3\hat{i}-4\hat{j}-6\hat{k}

\therefore (\vec{a}+\vec{b})\times (\vec{a}-2\vec{b}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\3 & -1 & 3\\ -3 & -4 & -6\end{vmatrix}

= \hat{i}(6+12)-\hat{j}(-18+9)+\hat{k}(-12-3)

= 18\hat{i}+9\hat{j}-15\hat{k}

\therefore (2\vec{a}+\vec{b}).[(\vec{a}+\vec{b})\times (\vec{a}-2\vec{b})] = (4\vec{i}+3\vec{j}+3\vec{k}).(18\hat{i}+9\hat{j}-15\hat{k})

= 4\times 18 - 3\times 9+3\times (-15)

= 72-27-45 = 72-72=0

(iii) Answer(b)

Given, |\vec{a}|=|\vec{b}| = 1

\therefore |\vec{a}-\vec{b}|^2 = |\vec{a}|^2+|\vec{b}|^2-2\vec{a}.\vec{b}

\Rightarrow |\vec{a}-\vec{b}|^2 = 1 + 1 - 2|\vec{a}||\vec{b}|\cos\theta

\Rightarrow |\vec{a}-\vec{b}|^2 = 2-2\cos\theta

\Rightarrow |\vec{a}-\vec{b}|^2 = 2(1-\cos\theta)

\Rightarrow |\vec{a}-\vec{b}|^2 = 2.2\sin^2\frac{\theta}{2}

\Rightarrow |\vec{a}-\vec{b}| = 2\sin\frac{\theta}{2}

(iv) Answer (c)

We have \vec{a}.\vec{b}=\vec{a}.\vec{c} = 0

\Rightarrow \vec{a}.\vec{b} = 0 \Rightarrow \vec{a}\perp\vec{b}
And \Rightarrow \vec{a}.\vec{c} = 0 \Rightarrow \vec{a}\perp\vec{c}

Since angle between \vec{b} and \vec{c} is \frac{\pi}{6}

\therefore \vec{a} =\pm2(\vec{b}\times \vec{c})

(v) Answer (c)

The area of the parallelogram formed by \vec{a} and \vec{b} as diagonal =\frac{1}{2}|\vec{a}\times\vec{b}|

\therefore A = \frac{1}{2}|\vec{a}\times\vec{b}| ---(i)

Now, \vec{a}\times\vec{b}=\begin{vmatrix} \hat{i} &\hat{j} &\hat{k} \\1 & -2 & 0\\ 2 & 1 & 3\end{vmatrix}

= \hat{i}(-6-0)-\hat{j}(3-0)+\hat{k}(1+4)

= -6\hat{i}-3\hat{j}+5\hat{k}

|\vec{a}\times\vec{b}| = \sqrt{(-6)^2+(-3)^2+(5)^2}

= \sqrt{36+9+25}=\sqrt{70}

Area = \frac{1}{2}\sqrt{70} sq.units.

Some other case study question

Case study: A man is watching an aeroplane which is at the co-ordinate point A(4, -1, 3) assuming that the man is at O(0, 0, 0). At the same time he saw a bird at the coordinate point B(2, 0, 4).

Based on the above information answer the following:

(a) Find the position vector \vec{AB}

(b) Find the distance between aeroplane and bird

(c) Find the unit vector along \vec{AB} .

(d) Find the direction cosine of \vec{AB} .

(e) Find the angles which \vec{AB} makes with x, y and z axes.

Solution: For solution click here

 

Case study three dimension geometry 1
The equation of motion of a missile are x = 3t, y = -4t, z = t where the time
Case study linear programming 4
A share is refferred to as a unit of owner ship which represents an equal proportion of a
Case study problem probability 7 chapter 13 class 12
Nisha and Arun appeared for first round of an competitive examination

Dileep namdev

Leave a Reply

Your email address will not be published. Required fields are marked *

x