Exercise 5.3 complex no. ncert math solution class 11

Exercise 5.3(Complex Numbers and Quadratic Equations)

Solve each of the following equations:(Exercise 5.3 complex no. ncert math solution class 11)

Question 1:  x^{2}+3=0.

Solution : The given quadratic equation is x^{2}+3=0.

\Rightarrow x^2 = -3

\Rightarrow x= \pm\sqrt{-3}

\Rightarrow x = \pm\sqrt{3}i \quad[\because \sqrt{-1}=i]

Question 2: 2 x^{2}+x+1=0.

Solution: The given quadratic equation is 2 x^{2}+x+1=0.

On comparing the given equation with a x^{2}+b x+c=0,

we obtain a=2, b=1, and c=1

Therefore, the discriminant of the given equation is given by

D=b^{2}-4 a c

=1^{2}-4 \times 2 \times 1=-7

Therefore, the required solutions are

x=\frac{-b \pm \sqrt{D}}{2 a}

=\frac{-1 \pm \sqrt{-7}}{2 \times 2}

=\frac{-1 \pm \sqrt{7} \cdot \sqrt{-1}}{4}

=\frac{-1 \pm \sqrt{7} i}{4} \quad[\because \sqrt{-1}=i]

Question 3: x^{2}+3 x+9=0.

Solution: The given quadratic equation is x^{2}+3 x+9=0.

On comparing the given equation with a x^{2}+b x+c=0,

we obtain a=1, b=3, and c=9

Therefore, the discriminant of the given equation is given by

D=b^{2}-4 a c

=3^{2}-4 \times 1 \times 9=9-36=-27

Therefore, the required solutions are

x=\frac{-b \pm \sqrt{D}}{2 a}

=\frac{-3 \pm \sqrt{-27}}{2 \times 1}

=\frac{-3 \pm 3 \sqrt{3} \cdot \sqrt{-1}}{2}

=\frac{-3 \pm 3 \sqrt{3} i}{2} \quad[\because \sqrt{-1}=i]

Question 4: -x^{2}+x-2=0.

Solution : The given quadratic equation is -x^{2}+x-2=0.

On comparing the given equation with a x^{2}+b x+c=0,

we obtain a=-1, b=1, and c=-2

Therefore, the discriminant of the given equation is given by

D=b^{2}-4 a c

=1^{2}-4 \times(-1) \times(-2)=-7

Therefore, the required solutions are

x=\frac{-b \pm \sqrt{D}}{2 a}

=\frac{-1 \pm \sqrt{-7}}{2 \times(-1)}

=\frac{-1 \pm \sqrt{7} \cdot \sqrt{-1}}{-2}

=\frac{1 \pm \sqrt{7} i}{2} \quad[\because \sqrt{-1}=i]

Question 5: x^{2}+3 x+5=0.

Solution : The given quadratic equation is x^{2}+3 x+5=0.

On comparing the given equation with a x^{2}+b x+c=0,

we obtain a=1, b=3, and c=5

Therefore, the discriminant of the given equation is given by

D=b^{2}-4 a c

=3^{2}-4 \times 1 \times 5=-11

Therefore, the required solutions are

x=\frac{-b \pm \sqrt{D}}{2 a}

=\frac{-3 \pm \sqrt{-11}}{2 \times 1}

=\frac{-3 \pm \sqrt{11} \cdot \sqrt{-1}}{2}

=\frac{-3 \pm \sqrt{11} i}{2} \quad[\because \sqrt{-1}=i]

Question 6: x^{2}-x+2=0.

Solution: The given quadratic equation is x^{2}-x+2=0.

On comparing the given equation with a x^{2}+b x+c=0,

we obtain a=1, b=-1, and c=2

Therefore, the discriminant of the given equation is given by

D=b^{2}-4 a c

=(-1)^{2}-4 \times 1 \times 2=-7

Therefore, the required solutions are

x=\frac{-b \pm \sqrt{D}}{2 a}

=\frac{-(-1) \pm \sqrt{-7}}{2 \times 1}

=\frac{1 \pm \sqrt{7} \cdot \sqrt{-1}}{2}

=\frac{1 \pm \sqrt{7} i}{2} \quad[\because \sqrt{-1}=i]

Question 7: \sqrt{2} x^{2}+x+\sqrt{2}=0.

Solution: The given quadratic equation is \sqrt{2} x^{2}+x+\sqrt{2}=0.

On comparing the given equation with a x^{2}+b x+c=0,

we obtain a=\sqrt{2}, b=1, and c=\sqrt{2}

Therefore, the discriminant of the given equation is given by

D=b^{2}-4 a c

=1^{2}-4 \times \sqrt{2} \times \sqrt{2}=-7

Therefore, the required solutions are

x=\frac{-b \pm \sqrt{D}}{2 a}

=\frac{-1 \pm \sqrt{-7}}{2 \times \sqrt{2}}

=\frac{-1 \pm \sqrt{7} \cdot \sqrt{-1}}{2 \sqrt{2}}

=\frac{-1 \pm \sqrt{7} i}{2 \sqrt{2}} \quad[\because \sqrt{-1}=i]

Question 8: \sqrt{3} x^{2}-\sqrt{2} x+3 \sqrt{3}=0.

Solution: The given quadratic equation is \sqrt{3} x^{2}-\sqrt{2} x+3 \sqrt{3}=0.

On comparing the given equation with a x^{2}+b x+c=0,

we obtain a=\sqrt{3}, b=-\sqrt{2}, and c=3 \sqrt{3}

Therefore, the discriminant of the given equation is given by

D=b^{2}-4 a c

=(-\sqrt{2})^{2}-4 \times \sqrt{3} \times 3 \sqrt{3}=-34

Therefore, the required solutions are

x=\frac{-b \pm \sqrt{D}}{2 a}

=\frac{-(-\sqrt{2}) \pm \sqrt{-34}}{2 \times \sqrt{3}}

=\frac{\sqrt{2} \pm \sqrt{34} \cdot \sqrt{-1}}{2 \sqrt{3}}

=\frac{\sqrt{2} \pm \sqrt{34} i}{2 \sqrt{3}} \quad[\because \sqrt{-1}=i]

Question 9: x^{2}+x+\frac{1}{\sqrt{2}}=0

Solution : The given quadratic equation is x^{2}+x+\frac{1}{\sqrt{2}}=0

\Rightarrow \sqrt{2} x^{2}+\sqrt{2} x+1=0.

On comparing the given equation with a x^{2}+b x+c=0,

we obtain a=\sqrt{2}, b=\sqrt{2}, and c=1

Therefore, the discriminant of the given equation is given by

D=b^{2}-4 a c

=\sqrt{2}^{2}-4 \times \sqrt{2} \times 1

=2-4 \sqrt{2}

=-(4 \sqrt{2}-2)=-2(2 \sqrt{2}-1)

Therefore, the required solutions are

x=\frac{-b \pm \sqrt{D}}{2 a}

=\frac{-\sqrt{2} \pm \sqrt{-2(2 \sqrt{2}-1)}}{2 \times \sqrt{2}}

=\frac{-\sqrt{2} \pm \sqrt{2(2 \sqrt{2}-1)} \cdot \sqrt{-1}}{2 \sqrt{2}}

=\frac{-1 \pm \sqrt{2 \sqrt{2}-1} i}{2} \quad[\because \sqrt{-1}=i]

Question 10: x^{2}+\frac{x}{\sqrt{2}}+1=0

Solution: The given quadratic equation is x^{2}+\frac{x}{\sqrt{2}}+1=0

\quad \Rightarrow \sqrt{2} x^{2}+x+\sqrt{2}=0.

On comparing the given equation with a x^{2}+b x+c=0,

we obtain a=\sqrt{2}, b=1, and c=\sqrt{2}

Therefore, the discriminant of the given equation is given by

D=b^{2}-4 a c

=1^{2}-4 \times \sqrt{2} \times \sqrt{2}

=1-8=-7

Therefore, the required solutions are

x=\frac{-b \pm \sqrt{D}}{2 a}

=\frac{-1 \pm \sqrt{-7}}{2 \times \sqrt{2}}

=\frac{-1 \pm \sqrt{7} \cdot \sqrt{-1}}{2 \sqrt{2}}

=\frac{-1 \pm \sqrt{7} i}{2 \sqrt{2}} \quad[\because \sqrt{-1}=i]

Exercise 5.1 complex no. ncert math solution class 11

Exercise 5.2 complex no. ncert math solution class 11

gmath.in

Leave a Comment