Chapter 7 Miscellaneous integration ncert maths class 12

Chapter 7:Miscellaneous Exercise 

Integrate the functions in Exercises 1 to 24.(Chapter 7 Miscellaneous integration ncert maths solution class 12)

Chapter 7 Miscellaneous integration ncert maths class 12

Question 1: \int\frac{1}{x-x^3}dx

Solution: \frac{1}{x-x^3}=\frac{1}{x\left(1-x^2\right)}=\frac{1}{x(1-x)(1+x)}

Let \frac{1}{x(1-x)(1+x)}=\frac{A}{x}+\frac{B}{(1-x)}+\frac{C}{(1+x)}--(i)

\Rightarrow 1=A\left(1-x^2\right)+B x(1+x)+C x(1-x)

Let x = 1

1 = 0+B(1)(1+1)+0

\Rightarrow 1 = 2B

\Rightarrow B = 1/2

Let x = -1

1 = 0+0+C((-1)(1+1)

\Rightarrow 1 = -2C

\Rightarrow C = -1/2

Let x = 0

1=A(1-0)+0+0

\Rightarrow A = 1

From equation (1), we have

\frac{1}{x(1-x)(1+x)}=\frac{1}{x}+\frac{1}{2(1-x)}-\frac{1}{2(1+x)}

Now, I=\int \frac{1}{x(1-x)(1+x)} d x=\int \frac{1}{x} d x+\frac{1}{2} \int \frac{1}{(1-x)} d x-\frac{1}{2} \int \frac{1}{(1+x)} d x

=\log |x|-\frac{1}{2} \log |(1-x)|-\frac{1}{2} \log |(1+x)|

=\log |x|-\log \left|(1-x)^{\frac{1}{2}}\right|-\log \left|(1+x)^{\frac{1}{2}}\right|

=\log \left|\frac{x}{(1-x)^{\frac{1}{2}}(1+x)^{\frac{1}{2}}}\right|+C=\log \left|\left(\frac{x^2}{1-x^2}\right)^{\frac{1}{2}}\right|+C=\frac{1}{2} \log \left|\frac{x^2}{1-x^2}\right|+C

Question 2: \int\frac{1}{\sqrt{x+a}+\sqrt{x+b}}dx

Solution: let I =\int\frac{1}{\sqrt{x+a}+\sqrt{x+b}}dx

=\int\frac{1}{\sqrt{x+a}+\sqrt{x+b}} \times \frac{\sqrt{x+a}-\sqrt{x+b}}{\sqrt{x+a}-\sqrt{x+b}}dx

=\int\frac{\sqrt{x+a}-\sqrt{x+b}}{(x+a)-(x+b)}dx

=\int\frac{\sqrt{x+a}-\sqrt{x+b}}{a-b}dx

I=\int \frac{1}{\sqrt{x+a}+\sqrt{x+b}} d x

=\frac{1}{a-b} \int(\sqrt{x+a}-\sqrt{x+b}) d x

=\frac{1}{a-b}\left[\frac{(x+a)^{\frac{3}{2}}}{\frac{3}{2}}-\frac{(x+b)^{\frac{3}{2}}}{\frac{3}{2}}\right]

=\frac{2}{3(a-b)}\left[(x+a)^{\frac{3}{2}}-(x+b)^{\frac{3}{2}}\right]+C

Question 3: \int\frac{1}{x \sqrt{a x-x^2}}dx

Solution: I=\int \frac{1}{x \sqrt{a x-x^2}} d x

Let x=\frac{a}{t} \Rightarrow d x=-\frac{a}{t^2} d t

I=\int \frac{1}{x \sqrt{a x-x^2}} d x

=\int \frac{1}{\frac{a}{t} \sqrt{a \cdot \frac{a}{t}-\left(\frac{a}{t}\right)^2}}\left(-\frac{a}{t^2} d t\right)

=-\int \frac{1}{a t} \cdot \frac{1}{\sqrt{\frac{1}{t}-\frac{1}{t^2}}} d t

=-\frac{1}{a} \int \frac{1}{\sqrt{\frac{t^2}{t}-\frac{t^2}{t^2}}} d t=-\frac{1}{a} \int \frac{1}{\sqrt{t-1}} d t=-\frac{1}{a}[2 \sqrt{t-1}]+C

=-\frac{1}{a}\left[2 \sqrt{\frac{a}{x}-1}\right]+C

=-\frac{2}{a}\left[\frac{\sqrt{a-x}}{\sqrt{x}}\right]+C

=-\frac{2}{a}\left[\sqrt{\frac{a-x}{x}}\right]+C

Question 4: \int\frac{1}{x^2\left(x^4+1\right)^{\frac{3}{4}}}dx

Solution: Let I=\int\frac{1}{x^2\left(x^4+1\right)^{\frac{3}{4}}}dx

I=\int \frac{1}{x^2\left(x^4+1\right)^{\frac{3}{4}}} d x

=\int \frac{1}{x^2(x^4)^{3/4}\left(1+\frac{1}{x^4}\right)^{\frac{3}{4}}} d x

=\int \frac{1}{x^5}(1+\frac{1}{x^4})^{-3/4}dx

\text { Let }1+ \frac{1}{x^4}=t

\Rightarrow-\frac{4}{x^5} d x=d t

\Rightarrow \frac{1}{x^5} d x=-\frac{d t}{4}

I=-\frac{1}{4} \int(t)^{-\frac{3}{4}} d t

=-\frac{1}{4}\left[\frac{(t)^{\frac{1}{4}}}{\frac{1}{4}}\right]+C

=-\frac{1}{4} \frac{\left(1+\frac{1}{x^4}\right)^{\frac{1}{4}}}{\frac{1}{4}}+C

=-\left(1+\frac{1}{x^4}\right)^{\frac{1}{4}}+C

Question 5: \int\frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}}dx \quad\left[\text { Hint } \frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}}=\frac{1}{x^{\frac{1}{3}}\left(1+x^{\left.\frac{1}{6}\right)}\right.} \quad \text { Put } x=t^6\right]

Solution: Let I= \int \frac{1}{x^{\frac{1}{2}}+x^{\frac{1}{3}}}dx

=\int \frac{1}{x^{\frac{1}{3}}\left(1+x^{\frac{1}{6}}\right)}dx

Let x=t^6 \Rightarrow d x=6 t^5 d t

I=\int \frac{6 t^5}{t^2(1+t)} d t

=6 \int \frac{ t^3}{(1+t)} d t

Dividing t^3 by denominator 1+t, we have

I=6 \int\left\{\left(t^2-t+1\right)-\frac{1}{1+t}\right\} d t

=6\left[\left(\frac{t^3}{3}\right)-\left(\frac{t^2}{2}\right)+t-\log |1+t|\right]

=2 x^{\frac{1}{2}}-3 x^{\frac{1}{3}}+6 x^{\frac{1}{6}}-6 \log \left(1+x^{\frac{1}{6}}\right)+C

=2 \sqrt{2}-3 x^{\frac{1}{3}}+6 x^{\frac{1}{6}}-6 \log \left(1+x^{\frac{1}{6}}\right)+C

Question 6: \int\frac{5 x}{(x+1)\left(x^2+9\right)}dx

Solution: Let \frac{5 x}{(x+1)\left(x^2+9\right)}=\frac{A}{(x+1)}+\frac{B x+C}{\left(x^2+9\right)}--(i)

\Rightarrow 5 x=A\left(x^2+9\right)+(B x+C)(x+1)

Let x = -1

5\times -1=A((-1)^2+9)+0

\Rightarrow -5 = 10A

\Rightarrow A = -1/2

Let x=0

0 = A(0+9)+(0+C)(0+1)

\Rightarrow 0 = 9A +C

\Rightarrow C =-9A

\Rightarrow C =\frac{9}{2}

Let x =1

5\times 1= A(1+9)+(B+C)(1+1)

\Rightarrow 5 =10A+2B+2C

\Rightarrow 5 =10\times -\frac{1}{2}+2B+2C\times\frac{9}{2}

\Rightarrow 5 = -5 +2B+9

\Rightarrow B=1/2

From equation (1), we have

\frac{5 x}{(x+1)\left(x^2+9\right)}=\frac{-1}{2(x+1)}+\frac{\frac{x}{2}+\frac{9}{2}}{\left(x^2+9\right)}

\text { Now, } I=\int \frac{5 x}{(x+1)\left(x^2+9\right)} d x=\int\left\{\frac{-1}{2(x+1)}+\frac{(x+9)}{2\left(x^2+9\right)}\right\} d x

=-\frac{1}{2} \log |x+1|+\frac{1}{2} \int \frac{x}{\left(x^2+9\right)} d x+\frac{9}{2} \int \frac{1}{\left(x^2+9\right)} d x

=-\frac{1}{2} \log |x+1|+\frac{1}{4} \int \frac{2 x}{\left(x^2+9\right)} d x+\frac{9}{2} \int \frac{1}{\left(x^2+9\right)} d x

=-\frac{1}{2} \log |x+1|+\frac{1}{4} \log \left|x^2+9\right|+\frac{9}{2} \cdot \frac{1}{3} \tan ^{-1} \frac{x}{3}+C

=-\frac{1}{2} \log |x+1|+\frac{1}{4} \log \left(x^2+9\right)+\frac{3}{2} \tan ^{-1} \frac{x}{3}+C

Question 7: \int \frac{\sin x}{\sin (x-a)}dx

Solution: Let I=\int \frac{\sin x}{\sin (x-a)} d x

Let (x-a)=t \Rightarrow d x=d t

I=\int \frac{\sin x}{\sin (x-a)} d x

=\int \frac{\sin (t+a)}{\sin t} d t

=\int \frac{\sin t \cos a+\cos t \sin a}{\sin t} d t

=\int(\cos a+\cot t \sin a) d t

=t \cos a+\sin a \log |\sin t|+C_1

=(x-a) \cos a+\sin a \log |\sin (x-a)|+C_1

=x \cos a+\sin a \log |\sin (x-a)|-a \cos a+C_1

\left.=\sin a \log |\sin (x-a)|+x \cos a+C \quad \text { [Where } C=C_1-a \cos a\right]

Question 8: \int\frac{e^{5 \log x}-e^{4 \log x}}{e^{3 \log x}-e^{2 \log x}}dx

Solution: Let I=\int\frac{e^{5 \log x}-e^{4 \log x}}{e^{3 \log x}-e^{2 \log x}}dx

=\int\frac{e^{4 \log x}\left(e^{\log x}-1\right)}{e^{2 \log x}\left(e^{\log x}-1\right)}dx

=\int\frac{e^{4 \log x}}{e^{2 \log x}}dx

=\int \frac{x^4}{x^2}dx

=\int x^2dx

=\frac{x^3}{3}+C

Question 9: \int \frac{\cos x}{\sqrt{4-\sin ^2 x}}dx

Solution: Let I =\frac{\cos x}{\sqrt{4-\sin ^2 x}}

Let \sin x=t \Rightarrow \quad \cos x d x=d t

I=\int \frac{\cos x}{\sqrt{4-\sin ^2 x}} d x

=\sin ^{-1}\left(\frac{t}{2}\right)+C

=\sin ^{-1}\left(\frac{\sin x}{2}\right)+C

Question 10: \int\frac{\sin ^8 x-\cos ^8 x}{1-2 \sin ^2 x \cos ^2 x}dx

Solution: Let I=\int\frac{\sin ^8 x-\cos ^8 x}{1-2 \sin ^2 x \cos ^2 x}dx

=\int\frac{\left(\sin ^4 x+\cos ^4 x\right)\left(\sin ^4 x-\cos ^4 x\right)}{\sin ^2 x+\cos ^2 x-\sin ^2 x \cos ^2 x-\sin ^2 x \cos ^2 x}dx

=\int\frac{\left(\sin ^4 x+\cos ^4 x\right)\left(\sin ^2 x-\cos ^2 x\right)\left(\sin ^2 x+\cos ^2 x\right)}{\left(\sin ^2 x-\sin ^2 x \cos ^2 x\right)+\left(\cos ^2 x-\sin ^2 x \cos ^2 x\right)}dx

=\int\frac{\left(\sin ^4 x+\cos ^4 x\right)\left(\sin ^2 x-\cos ^2 x\right)}{\sin ^2 x\left(1-\cos ^2 x\right)+\cos ^2 x\left(1-\sin ^2 x\right)}dx

=\frac{\left(\sin ^4 x+\cos ^4 x\right)\left(\sin ^2 x-\cos ^2 x\right)}{\sin ^4 x+\cos ^4 x}dx

=-\int\cos 2 xdx

=-\frac{\sin 2 x}{2}+C

Question 11: \int\frac{1}{\cos (x+a) \cos (x+b)}dx

Solution : Let I= \int\frac{1}{\cos (x+a) \cos (x+b)}dx

Multiplying and dividing by \sin (a-b), we have

=\frac{1}{\sin (a-b)}\int\left[\frac{\sin (a-b)}{\cos (x+a) \cos (x+b)}\right]dx

=\frac{1}{\sin (a-b)}\int\left[\frac{\sin \{(x+a)-(x+b)\}}{\cos (x+a) \cos (x+b)}\right]dx

=\frac{1}{\sin (a-b)}\int\left[\frac{\sin (x+a) \cos (x+b)-\cos (x+a) \sin (x+b)}{\cos (x+a) \cos (x+b)}\right]dx

=\frac{1}{\sin (a-b)}\int\left[\frac{\sin (x+a)}{\cos (x+a)}-\frac{\sin (x+b)}{\cos (x+b)}\right]dx

=\frac{1}{\sin (a-b)}\int[\tan (x+a)-\tan (x+b)]dx

=\frac{1}{\sin (\mathrm{a}-\mathrm{b})}[-\log |\cos (x+a)|+\log |\cos (x+b)|]+C

=\frac{1}{\sin (\mathrm{a}-\mathrm{b})} \log \left|\frac{\cos (x+b)}{\cos (x+a)}\right|+C

Question 12: \int\frac{x^3}{\sqrt{1-x^8}}dx

Solution: Let I=\int \frac{x^3}{\sqrt{1-x^8}} d x

=\int \frac{x^3}{\sqrt{1-(x^4)^2}} d x

Let x^4 =t

\Rightarrow 4x^3dx=dt

\Rightarrow x^3dx=\frac{dt}{4}

I=\frac{1}{4}\int \frac{1}{\sqrt{1-t^2}} d x

=\frac{1}{4}\sin^{-1}t+C

=\frac{1}{4}\sin^{-1}x^4+C

Question 13: \int\frac{e^x}{(1+e^x)(2+e^x)}dx

Solution: Let I=\int\frac{e^x}{(1+e^x)(2+e^x)}dx

Let e^x =t\Rightarrow e^xdx=dt

I=\int\frac{1}{(1+t)(2+t)}dt

Since,

\frac{1}{(1+t)(2+t)}=\frac{A}{1+t}+\frac{B}{2+t}--(i)

\Rightarrow \frac{1}{(1+t)(2+t)}=\frac{A(2+t)+B(1+t)}{(1+t)(2+t)}

\Rightarrow 1=A(2+t)+B(1+t)

Let t=-1

1=A(2-1)+0

\Rightarrow A=1

Again Let t=-2

1=0+B(1-2)

\Rightarrow 1 = -B\Rightarrow B = -1

Putting the value of A and B in (i) and integrate

\int\frac{1}{(1+t)(2+t)}dt=\int\frac{1}{1+t}+\frac{-1}{2+t}dt

=\log |1+t|-\log |2+t|+C

=\log \left|\frac{1+t}{2+t}\right|+C

=\log \left|\frac{1+e^x}{2+e^x}\right|+C

Question 14: \int\frac{1}{(x^2+1)(x^2+4)}dx

Solution: Let I=\int\frac{1}{(x^2+1)(x^2+4)}dx

Let x^2=y

\frac{1}{(y+1)(y+4)}=\frac{A}{(y+1)}+\frac{B}{(y+4)}--(i)

\Rightarrow \frac{1}{(y+1)(y+4)}=\frac{A(y+4)+B(y+1)}{(y+1)(y+4)}

\Rightarrow 1=A(y+4)+B(y+1)

Let y=-1

1=A(-1+4)+0

\Rightarrow 1 = 3A\Rightarrow A=\frac{1}{3}

Let y= -4

1=0+B(-4+1)

\Rightarrow 1 =-3B\Rightarrow B = -\frac{1}{3}

Putting the value of A and b and integrate

\frac{1}{(y+1)(y+2)}=\frac{1/3}{(y+1)}+\frac{-1/3}{(y+4)}

\int\frac{1}{(x^2+1)(x^2+4)}dx=\int\frac{1/3}{(x^2+1)}+\frac{-1/3}{(x^2+4)}dx

=\frac{1}{3}\tan^{-1}x-\frac{1}{3\times 2}\tan^{-1}\frac{x}{2}+C

=\frac{1}{3}\tan^{-1}x-\frac{1}{6}\tan^{-1}\frac{x}{2}+C

Question 15: \int\cos ^3 x e^{\log \sin x}dx

Solution : Let I=\int \cos ^3 x e^{\log \sin x} d x

=\int \cos ^3 x \sin x d x \quad\left[\text { Since } e^{\log x}=x\right]

Let \cos x=t \quad \Rightarrow \sin x d x=d t

I=-\int t^3 d t

=-\int \frac{t^4}{4}+C

=-\frac{\cos ^4 x}{4}+C

Question 16: \int e^{3 \log x}\left(x^4+1\right)^{-1}dx

Solution : Let I=\int e^{3 \log x}\left(x^4+1\right)^{-1}dx

=\int e^{\log x^3}\left(x^4+1\right)^{-1}dx

=\int \frac{x^3}{\left(x^4+1\right)}dx \quad\left[\text { Since } e^{\log x}=x\right]

Let x^4+1=t \quad \Rightarrow 4 x^3 d x=d t

=\frac{1}{4}\int \frac{1}{t} d x

=\frac{1}{4} \log |t|+C

=\frac{1}{4} \log \left|x^4+1\right|+C

=\frac{1}{4} \log \left(x^4+1\right)+C

Question 17: \int f^{\prime}(a x+b)\left[\int(a x+b)\right]^ndx

Solution : Let I=\int f^{\prime}(a x+b)\left[\int(a x+b)\right]^n d x

Let \int(a x+b)=t \quad \Rightarrow a f^{\prime}(a x+b) d x=d t

I=\int f^{\prime}(a x+b)\left[\int(a x+b)\right]^n d x

=\frac{1}{a} \int t^n d t

=\frac{1}{a}\left[\frac{t^{n+1}}{n+1}\right]

=\frac{1}{a(n+1)}\left[\int(a x+b)\right]^{n+1}+C

Question 18: \int \frac{1}{\sqrt{\sin ^3 x \sin (x+a)}}dx

Solution : Let I= \frac{1}{\sqrt{\sin ^3 x \sin (x+a)}}dx

=\int\frac{1}{\sqrt{\sin ^3 x(\sin x \cos a+\cos x \sin a)}}dx

=\int \frac{1}{\sqrt{\left(\sin ^4 x \cos a+\sin ^3 x \cos x \sin a\right)}}dx

=\int \frac{1}{\sin ^2 x \sqrt{(\cos a+\cot x \sin a)}}dx

=\int \frac{\operatorname{cosec}^2 x}{\sqrt{(\cos a+\cot x \sin a)}}dx

Let \cos a+\cot x \sin a=t \quad \Rightarrow-\operatorname{cosec}^2 x \sin a d x=d t

I=\int \frac{1}{\sqrt{\sin ^3 x \sin (x+a)}} d x

=\int \frac{\operatorname{cosec}^2 x}{\sqrt{(\cos a+\cot x \sin a)}} d x

=\frac{-1}{\sin a} \int \frac{d t}{\sqrt{t}}

=\frac{-1}{\sin a}[2 \sqrt{t}]+C

=\frac{-2}{\sin a}\left[\sqrt{\cos a+\frac{\cos x \sin a}{\sin x}}\right]+C

=\frac{-2}{\sin a} \sqrt{\frac{\sin \mathrm{x} \cos \mathrm{a}+\cos x \sin a}{\sin x}}+C

=\frac{-2}{\sin a} \sqrt{\frac{\sin (x+a)}{\sin x}+C}

Question 19: \int \frac{\sin ^{-1} \sqrt{x}-\cos ^{-1} \sqrt{x}}{\sin ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{x}}, x \in[0,1]

Solution : Let I=\int \frac{\sin ^{-1} \sqrt{x}-\cos ^{-1} \sqrt{x}}{\sin ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{x}} d x

We know that: \sin ^{-1} \sqrt{x}+\cos ^{-1} \sqrt{x}=\frac{\pi}{2}

Therefore, \quad I=\int \frac{\left(\frac{\pi}{2}-\cos ^{-1} \sqrt{x}\right)-\cos ^{-1} \sqrt{x}}{\frac{\pi}{2}} d x

=\frac{2}{\pi} \int\left(\frac{\pi}{2}-2 \cos ^{-1} \sqrt{x}\right) d x

=\frac{2}{\pi} \cdot \frac{\pi}{2} \int 1 d x-\frac{2}{\pi} \cdot 2 \int \cos ^{-1} \sqrt{x} d x

I=x-\frac{4}{\pi} \int \cos ^{-1} \sqrt{x} d x

Let I_1=\int \cos ^{-1} \sqrt{x} d x \quad and let \sqrt{x}=t \quad \Rightarrow d x=2 t d t

I_1=2 \int \cos ^{-1} t \cdot t d t

=2\left[\cos ^{-1} t \cdot \frac{t^2}{2}-\int \frac{-1}{\sqrt{1-t^2}} \cdot \frac{t^2}{2} d t\right]

=t^2 \cos ^{-1} t+\int \frac{t^2}{\sqrt{1-t^2}} d t

=t^2 \cos ^{-1} t-\int \frac{1-t^2-1}{\sqrt{1-t^2}} d t

=t^2 \cos ^{-1} t-\int \sqrt{1-t^2} d t+\int \frac{1}{\sqrt{1-t^2}} d t

=t^2 \cos ^{-1} t-\frac{t}{2} \sqrt{1-t^2} d t-\frac{1}{2} \sin ^{-1} t+\sin ^{-1} t

=t^2 \cos ^{-1} t-\frac{t}{2} \sqrt{1-t^2} d t+\frac{1}{2} \sin ^{-1} t

From equation (1), we have

I=x-\frac{4}{\pi}\left[t^2 \cos ^{-1} t-\frac{t}{2} \sqrt{1-t^2} d t+\frac{1}{2} \sin ^{-1} t\right]

\Rightarrow I=x-\frac{4}{\pi}\left[x \cos ^{-1} \sqrt{x}-\frac{\sqrt{x}}{2} \sqrt{1-x} d t+\frac{1}{2} \sin ^{-1} \sqrt{x}\right]

\Rightarrow I=x-\frac{4}{\pi}\left[x\left(\frac{\pi}{2}-\sin ^{-1} \sqrt{x}\right)-\frac{\sqrt{x-x^2}}{2}+\frac{1}{2} \sin ^{-1} \sqrt{x}\right]

\Rightarrow I=x-2 x+\frac{4}{\pi} \sin ^{-1} \sqrt{x}+\frac{2}{\pi} \sqrt{x-x^2}-\frac{2}{\pi} \sin ^{-1} \sqrt{x}

\Rightarrow I=-x+\frac{2}{\pi}\left[(2 x+1) \sin ^{-1} \sqrt{x}\right]+\frac{2}{\pi} \sqrt{x-x^2}+C

\Rightarrow I=\frac{2(2 x+1)}{\pi} \sin ^{-1} \sqrt{x}+\frac{2}{\pi} \sqrt{x-x^2}-x+C

Question 20: \int\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}dx

Solution : Let I=\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} d x

Let x=cos ^2 \theta \quad \Rightarrow d x=-2 \sin \theta \cos \theta d \theta

I=\int \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}(-2 \sin \theta \cos \theta) d \theta

=-\int \frac{2 \sin ^2 \frac{\theta}{2}}{2 \cos ^2 \frac{\theta}{2}}(\sin 2 \theta) d \theta

=-\int \sqrt{\tan \frac{\theta}{2}} \cdot 2 \sin \theta \cos \theta d \theta

=-2 \int \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}\left(2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right) \cos \theta d \theta

=-4 \int \sin ^2 \frac{\theta}{2} \cos \theta d \theta

=-4 \int \sin ^2 \frac{\theta}{2}\left(2 \cos ^2 \frac{\theta}{2}-1\right) d \theta

=-4 \int\left(2 \sin ^2 \frac{\theta}{2} \cos ^2 \frac{\theta}{2}-\sin ^2 \frac{\theta}{2}\right) d \theta

=-8 \int \sin ^2 \frac{\theta}{2} \cos ^2 \frac{\theta}{2} d \theta+4 \int \sin ^2 \frac{\theta}{2} d \theta

=-2 \int \sin ^2 \theta d \theta+4 \int \sin \frac{\theta}{2} d \theta

=-2 \int\left(\frac{1-\cos 2 \theta}{2}\right) d \theta+4 \int \frac{1-\cos \theta}{2} d \theta

=-2\left[\frac{\theta}{2}-\frac{\sin ^2 \theta}{4}\right]+4\left[\frac{\theta}{2}-\frac{\sin \theta}{2}\right]+C

=-\theta+\frac{\sin ^2 \theta}{2}+2 \theta-2 \sin \theta+C

=\theta+\frac{\sin 2 \theta}{2}-2 \sin \theta+C

=\theta+\frac{2 \sin \theta \cos \theta}{2}-2 \sin \theta+C

=\theta+\sqrt{1-\cos ^2 \theta} \cdot \cos \theta-2 \sqrt{1-\cos ^2 \theta}+C

=-2 \cos ^{-1} \sqrt{x}+\sqrt{1-x} \cdot \sqrt{x}-2 \sqrt{1-x}+C

=-2 \sqrt{1-x}+\cos ^{-1} \sqrt{x}+\sqrt{x(1-x)}+C

=-2 \sqrt{1-x}+\cos ^{-1} \sqrt{x}+\sqrt{\left(x-x^2\right)}+C

Question 21: \int\frac{2+\sin 2 x}{1+\cos 2 x} e^xdx

Solution : Let I=\int\left(\frac{2+\sin 2 x}{1+\cos 2 x}\right) e^x d x

=\int\left(\frac{2+2 \sin x \cos x}{2 \cos ^2 x}\right) e^x d x

=\int\left(\frac{1+\sin x \cos x}{\cos ^2 x}\right) e^x d x

=\int\left(\sec ^2 x+\tan x\right) e^x d x

\text { Let } f(x)=\tan x \Rightarrow f^{\prime}(x)=\sec ^2 x

We know that: I=\int\left\{f(x)+f^{\prime}(x)\right\} e^x d x

Therefore, \quad I=\int\left(\sec ^2 x+\tan x\right) e^x d x

=e^x f(x)+C

=e^x \tan x+C

Question 22: \int\frac{x^2+x+1}{(x+1)^2(x+2)}dx

Solution: Let \frac{x^2+x+1}{(x+1)^2(x+2)}=\frac{A}{(x+1)}+\frac{B}{(x+1)^2}+\frac{C}{(x+2)}

\Rightarrow \frac{x^2+x+1}{(x+1)^2(x+2)}=\frac{A(x+1)(x+2)+B(x+2)+C(x+1)^2}{(x+1)^2(x+2)}

\Rightarrow x^2+x+1=A(x+1)(x+2)+B(x+2)+C\left(x+1\right)^2

Let x=-1

(-1)^2-1+1=0+B(-1+2)+0

\Rightarrow 1 = B

Let x=-2

(-2)^2-2+1=0+0+C(-2+1)^2

\Rightarrow 3=C

Let x=0

0+0+1=A(0+1)(0+2)+B(0+2)+C(0+1)^2

\Rightarrow 1 =2A+2B+C

\Rightarrow 1= 2A +2\times 1+3

\Rightarrow 1=2A+5

\Rightarrow A = -2

A=-2, \quad B=1 \quad \text { and } \quad C=3

From equation (1), we have

\frac{x^2+x+1}{(x+1)^2(x+2)}=\frac{-2}{(x+1)}+\frac{1}{(x+1)^2}+\frac{3}{(x+2)}

Therefore, \quad I=\int \frac{x^2+x+1}{(x+1)^2(x+2)} d x

=-2 \int \frac{1}{(x+1)} d x+3 \int \frac{1}{(x+2)} d x+\int \frac{1}{(x+1)^2} d x

=-2 \log |x+1|+3 \log |x+2|-\frac{1}{(x+1)}+C

Question 23: \int\tan ^{-1} \sqrt{\frac{1-x}{1+x}} d x

Solution :Let I=\int \tan ^{-1} \sqrt{\frac{1-x}{1+x}} d x

Let x=\cos \theta \quad \Rightarrow d x=-\sin \theta d \theta

I =\int \tan ^{-1} \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}(-\sin \theta d \theta)

=-\int \tan ^{-1} \sqrt{\frac{2 \sin ^2 \frac{\theta}{2}}{2 \cos ^2 \frac{\theta}{2}}} \sin \theta d \theta

=-\int \tan ^{-1} \tan \frac{\theta}{2} \cdot \sin \theta d \theta

=-\frac{1}{2} \int \theta \sin \theta d \theta

=-\frac{1}{2}\left[\theta(-\cos \theta)-\int 1 \cdot(-\cos \theta) d \theta\right]

=-\frac{1}{2}[-\theta \cos \theta+\sin \theta]

=\frac{1}{2} \theta \cos \theta-\frac{1}{2} \sqrt{1-\cos ^2 \theta}

=\frac{1}{2} \cos ^{-1} x \cdot x-\frac{1}{2} \sqrt{1-x^2}+C

=\frac{x}{2} \cos ^{-1} x-\frac{1}{2} \sqrt{1-x^2}+C

=\frac{1}{2}\left(x \cos ^{-1} x-\sqrt{1-x^2}\right)+C

Question 24: \int\frac{\sqrt{x^2+1}\left[\log \left(x^2+1\right)-2 \log x\right]}{x^4}dx

Solution: Let I=\int\frac{\sqrt{x^2+1}\left[\log \left(x^2+1\right)-2 \log x\right]}{x^4}dx

=\int\frac{\sqrt{x^2+1}}{x^4}\left[\log \left(x^2+1\right)-2 \log x\right]dx

=\int\frac{\sqrt{x^2+1}}{x^4}\left[\log \left(\frac{x^2+1}{x^2}\right)\right]dx

=\int\frac{\sqrt{x^2+1}}{x^4}\left[\log \left(1+\frac{1}{x^2}\right)\right]dx

=\int\frac{1}{x^3} \sqrt{\frac{x^2+1}{x^2}}\left[\log \left(1+\frac{1}{x^2}\right)\right]dx

=\int\frac{1}{x^3} \sqrt{1+\frac{1}{x^2}}\left[\log \left(1+\frac{1}{x^2}\right)\right]dx

Let 1+\frac{1}{x^2}=t \quad \Rightarrow \frac{-2}{x^3} d x=d t

Therefore, \quad I=\int \frac{1}{x^3} \sqrt{1+\frac{1}{x^2}} \log \left(1+\frac{1}{x^2}\right) d x

=-\frac{1}{2} \int \sqrt{t} \log t d t

=-\frac{1}{2} \int t^{\frac{1}{2}} \cdot \log t d t

Integrating by parts, we have

I=-\frac{1}{2}\left[\log t \cdot \int t^{\frac{1}{2}} d t-\int\left\{\left(\frac{d}{d t} \log t\right) \int t^{\frac{1}{2}} d t\right\} d t\right]

=-\frac{1}{2}\left[\log t \cdot \frac{t^{\frac{3}{2}}}{\frac{3}{2}}-\int \frac{1}{t} \cdot \frac{t^{\frac{3}{2}}}{\frac{3}{2}} d t\right]

=-\frac{1}{2}\left[\frac{2}{3} t^{\frac{3}{2}} \log t-\frac{2}{3} \int t^{\frac{1}{2}} d t\right]

=-\frac{1}{2}\left[\frac{2}{3} t^{\frac{3}{2}} \log t-\frac{4}{9} \cdot t^{\frac{3}{2}}\right]

=\frac{1}{3} t^{\frac{3}{2}} \log t-\frac{2}{9} \cdot t^{\frac{3}{2}}

=\frac{1}{3}t^{3/2}\left[\log t-\frac{2}{3}\right]

=\frac{1}{3}\left(1+\frac{1}{x^2}\right)\left[\log(1+\frac{1}{x^2})-\frac{2}{3}\right]+C

Evaluate the definite integrals in Exercises 25 to 33.

Question 25: \int_{\pi/2}^\pi e^x\left(\frac{1-\sin x}{1-\cos x}\right)dx

Solution: Let I = \int_{\pi/2}^\pi e^x\left(\frac{1-\sin x}{1-\cos x}\right)dx

= \int_{\pi/2}^\pi e^x\left(\frac{1-2\sin{\frac{x}{2}}\cos{\frac{x}{2}}}{2\sin^2{\frac{x}{2}}}\right)dx

=\int_{\pi/2}^\pi e^x\left(\frac{1}{2\sin^2\frac{x}{2}}-\frac{2\sin\frac{x}{2}\cos\frac{x}{2}}{2\sin^2\frac{x}{2}}\right)dx

=\int_{\pi/2}^\pi e^x\left(\frac{\operatorname{cosec}^2\frac{x}{2}}{2}-\cot\frac{x}{2}\right)dx

Let f(x) = -\cot\frac{x}{2}

\Rightarrow f'(x)=\operatorname{cosec}^2\frac{x}{2}

Therefore, I = \int e^x(f(x)+f'(x))dx

I=e^xf(x)+C

I=-\left[e^x\cot\frac{x}{2}\right]_{\pi/2}^\pi

=-\left[e^{\pi}\cot\frac{\pi}{2}-e^{\frac{\pi}{2}}\cot\frac{\pi}{4} \right]

=-\left[e^{\pi}\times 0-e^{\frac{\pi}{2}}\times 1\right]

=e^{\frac{\pi}{2}}

Question 26: \int_0^{\pi/4}\frac{\sin x \cos x}{\cos^4x+\sin^4x}dx

Solution: Let I=\int_0^{\pi/4}\frac{\sin x \cos x}{\cos^4x+\sin^4x}dx

Divide by \cos^4x in numerator and denominator

=\int_0^{\pi/4}\frac{\frac{\sin x\cos x}{\cos^4x}}{\frac{\cos^4x}{\cos^4x}+\frac{\sin^4x}{\cos^4x}}dx

=\int_0^{\pi/4}\frac{\tan x\sec^2x}{1+\tan^4x}dx

Let \tan^2x =t

\Rightarrow 2\tan x\sec^2xdx=dt

\Rightarrow \tan x\sec^2x = \frac{dt}{2}

When x=o,t=0 and when x=\frac{\pi}{2},t=1

I = \frac{1}{2}\int_0^1\frac{1}{1+t^2}dt

=\frac{1}{2}[\tan^{-1}t]_0^1

=\frac{1}{2}[\tan^{-1}1-\tan^{-1}0]=\frac{1}{2}[\frac{\pi}{4}]

=\frac{\pi}{8}

Question 27: \int_0^{\frac{\pi}{2}}\frac{\cos^2x}{\cos^2x+4\sin^2x}dx

Solution: Let I=\int_0^{\frac{\pi}{2}}\frac{\cos^2x}{\cos^2x+4\sin^2x}dx

=\int_0^{\frac{\pi}{2}}\frac{\cos^2x}{\cos^2x+4(1-\cos^2x)}dx

=-\frac{1}{3}\int_0^{\frac{\pi}{2}}\frac{-3\cos^2x}{4-3\cos^2x}dx

=-\frac{1}{3}\int_0^{\frac{\pi}{2}}\frac{4-3\cos^2x-4}{4-3\cos^2x}dx

=-\frac{1}{3}\left[\int_0^{\frac{\pi}{2}}\frac{4-3\cos^2x}{4-3\cos^2x}dx-\int_0^{\frac{\pi}{2}}\frac{4}{4-3\cos^2x}dx\right]

=-\frac{1}{3}\int_0^{\frac{\pi}{2}}1dx+\frac{4}{3}\int_0^{\frac{\pi}{2}}\frac{1}{4-3\cos^2x}dx

=-\frac{1}{3}[x]_0^{\pi/2}+\frac{4}{3}\int_0^{\frac{\pi}{2}}\frac{\sec^2x}{4\sec^2x-3}dx

=-\frac{1}{3}[\frac{\pi}{2}-0]+\frac{4}{3}\int_0^{\frac{\pi}{2}}\frac{\sec^2x}{4(1+\tan^2x)-3}dx

=-\frac{\pi}{6}+\frac{4}{3}\int_0^{\frac{\pi}{2}}\frac{\sec^2x}{1+4\tan^2x}dx

=-\frac{\pi}{6}+\frac{4}{3}\int_0^{\frac{\pi}{2}}\frac{\sec^2x}{1+(2\tan x)^2}dx

Let 2\tan x =t\Rightarrow 2\sec^2x dx=dt

\Rightarrow \sec^2x dx=\frac{dt}{2}

When x=0,t=0 and when x=\frac{\pi}{2},t=\infty

I=-\frac{\pi}{6}+\frac{4}{3}\int_0^{\infty}\frac{1}{1+t^2}\frac{dt}{2}

=-\frac{\pi}{6}+\frac{2}{3}\int_0^{\infty}\frac{1}{1+t^2}dt

=-\frac{\pi}{6}+\frac{2}{3}\left[\tan^{-1}t\right]_0^\infty

=-\frac{\pi}{6}+\frac{2}{3}\left[\tan^{-1}\infty-\tan^{-1}0 \right]

=-\frac{\pi}{6}+\frac{2}{3}\left[\frac{\pi}{2}-0 \right]

=-\frac{\pi}{6}+\frac{\pi}{3}

=\frac{\pi}{6}

Question 28: \int_{\pi/6}^{\pi/3}\frac{\sin x+\cos x}{\sqrt{\sin 2x}}dx

Solution: Let I=\int_{\pi/6}^{\pi/3}\frac{\sin x+\cos x}{\sqrt{\sin 2x}}dx

Let \sin x-\cos x=t

\Rightarrow (\cos x+\sin x)dx=dt

Again taking \sin x-\cos x=t

Squaring both side

(\sin x-\cos x)^2=t^2

\Rightarrow \sin^2x+\cos^2x-2\sin x\cos x=t^2

\Rightarrow 1-\sin 2x=t^2

\Rightarrow \sin 2x = 1-t^2

When x =\frac{\pi}{6},t= \sin\frac{\pi}{6}-\cos\frac{\pi}{6}
=\frac{1}{2}-\frac{\sqrt{3}}{2}=-(\frac{\sqrt{3}-1}{2})

and When x =\frac{\pi}{3},t= \sin\frac{\pi}{3}-\cos\frac{\pi}{3}
=\frac{\sqrt{3}}{2}-\frac{1}{2}=(\frac{\sqrt{3}-1}{2})

Now

I=\displaystyle\int_{-(\frac{\sqrt{3}-1}{2})}^{(\frac{\sqrt{3}-1}{2})}\frac{1}{\sqrt{1-t^2}}dt

=\left[\sin^{-1}t\right]_{-(\frac{\sqrt{3}-1}{2})}^{(\frac{\sqrt{3}-1}{2})}

=\sin^{-1}{(\frac{\sqrt{3}-1}{2})}-\sin^{-1}\{-(\frac{\sqrt{3}-1}{2})\}

=\sin^{-1}{(\frac{\sqrt{3}-1}{2})}+\sin^{-1}(\frac{\sqrt{3}-1}{2})

=2\sin^{-1}{(\frac{\sqrt{3}-1}{2})}

Question 29: \int_0^1\frac{1}{\sqrt{1+x}-\sqrt{x}}dx

Solution: Let I=\int_0^1\frac{1}{\sqrt{1+x}-\sqrt{x}}dx

=\int_0^1\frac{1}{\sqrt{1+x}-\sqrt{x}}\times\frac{\sqrt{1+x}+\sqrt{x}}{\sqrt{1+x}+\sqrt{x}}dx

=\int_0^1 \frac{\sqrt{1+x}+\sqrt{x}}{1+x-x}dx

=\int_0^1\sqrt{1+x}+\sqrt{x}dx

=\left[\frac{(1+x)^{3/2}}{3/2}-\frac{x^{3/2}}{3/2}\right]_0^1

=\frac{2}{3}\left[(1+x)^{3/2}-x^{3/2}\right]_0^1

=\frac{2}{3}\left[\left((1+1)^{3/2}+(1)^{3/2}\right)-\left((1+0)^{3/2}+0\right)\right]

\frac{2}{3}[2\sqrt{2}+1-1]

=\frac{4\sqrt{2}}{3}

Question 30: \int_0^{\frac{\pi}{4}}\frac{\sin x+\cos x}{9+16\sin 2x}dx

Solution: Let I=\int_0^{\frac{\pi}{4}}\frac{\sin x+\cos x}{9+16\sin 2x}dx

Let \sin x-\cos x=t

\Rightarrow (\cos x+\sin x)dx=dt

Again taking \sin x-\cos x=t

Squaring both side

(\sin x-\cos x)^2=t^2

\Rightarrow \sin^2x+\cos^2x-2\sin x\cos x=t^2

\Rightarrow 1-\sin 2x=t^2

\Rightarrow \sin 2x = 1-t^2

When x =0,t= \sin0-\cos0=-1

and When x =\frac{\pi}{4},t= \sin\frac{\pi}{4}-\cos\frac{\pi}{4}
=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}=0

Now

I=\int_{-1}^0\frac{1}{9+16(1-t^2)}dt

=\int_{-1}^0\frac{1}{25-16t^2}dt

=\int_{-1}^0\frac{1}{(5)^2-(4t)^2}dt

=\frac{1}{4}\left[\frac{1}{2(5)}\log\left|\frac{5+4t}{5-4t}\right|\right]_{-1}^0

=\frac{1}{40}\left[\log|1|-\log\left|\frac{1}{9}\right|\right]

=\frac{1}{40}\log 9

Question 31: \int_0^{\frac{\pi}{2}}\sin2x\tan^{-1}(\sin x)dx

Solution: Let I=\int_0^{\frac{\pi}{2}}\sin2x\tan^{-1}(\sin x)dx

=\int_0^{\frac{\pi}{2}}2\sin x\cos x\tan^{-1}(\sin x)dx

Let \sin x=t\Rightarrow \cos x dx=dt

When x=0,t=0 and when x=\frac{\pi}{2}, t=1

I=\int_0^12t\tan^{-1}tdt

=2\int_0^1\tan^{-1}tdt

=2\left[\tan^{-1}t\int t-\int\{\frac{d}{dt}\tan^{-1}t\int t dt\}dt\right]_0^1

=2\left[\tan^{-1}t\times \frac{t^2}{2}-\int\frac{1}{1+t^2}\times\frac{t^2}{2}dt\right]

=2\left[\frac{t^2}{2}\tan^{-1}t-\frac{1}{2}\int \frac{t^2+1-1}{1+t^2}dt\right]_0^1

=2\left[\frac{t^2}{2}\tan^{-1}t-\frac{1}{2}\int1-\frac{1}{1+t^2}dt\right]_0^1

=2\left[\frac{t^2}{2}\tan^{-1}t-\frac{1}{2}(t-\tan^{-1}t)\right]_0^1

=\left[t^2\tan^{-1}t-t+\tan^{-1}t\right]_0^1

=\left[(1\times \tan^{-1}1-1+\tan^{-1}1)-(0-0+0)\right]

=\left[\frac{\pi}{4}-1+\frac{\pi}{4}\right]

=\frac{\pi}{2}-1

Question 32: \int_0^\pi\frac{x\sec x}{\sec x+\tan x}dx

Solution: Let I=\int_0^\pi\frac{x\sec x}{\sec x+\tan x}dx--(i)

\left[using property: \int_0^a f(x) dx=\int_0^af(a-x)dx\right]

I=\int_0^\pi\frac{(\pi-x)\sec(\pi- x)}{\sec (\pi-x)+\tan (\pi-x)}dx

I=\int_0^\pi\frac{-(\pi-x)\sec x}{-\sec x-\tan x}dx

I=\int_0^\pi\frac{(\pi-x)\sec x}{\sec x+\tan x}dx--(ii)

Adding (i) and (ii)

2I=\int_0^\pi\frac{x\sec x}{\sec x+\tan x}+\frac{(\pi-x)\sec x}{\sec x+\tan x}dx

\Rightarrow 2I=\int_0^\pi\frac{\pi\sec x}{\sec x+\tan x}dx

\Rightarrow 2I = \pi\int_0^\pi\frac{\tan x}{\sec x+\tan x}\times \frac{\sec x-\tan x}{\sec x-\tan x}dx

\Rightarrow 2I=\pi\int_0^\pi\frac{\tan x(\sec x-\tan x)}{\sec^2x-\tan^2x}dx

\Rightarrow 2I=\pi\int_0^\pi \sec x\tan x-\tan^2xdx

\Rightarrow 2I=\pi\int_0^\pi \sec x\tan x-(\sec^2x-1)dx

\Rightarrow 2I=\pi\int_0^\pi \sec x\tan x-\sec^2x+1dx

\Rightarrow 2I =\pi\left[\sec x-\tan x+x\right]_0^\pi

\Rightarrow I = \frac{\pi}{2}\left[(\sec\pi-\tan\pi+\pi)-(\sec 0-\tan 0+0)\right]

\Rightarrow I= \frac{\pi}{2}\left[(-1-0+\pi)-(1-0+0)\right]

=\frac{\pi}{2}[\pi-2]

Question 33: \int_1^4 |x-1|+|x-2|+|x-3|dx

Solution: Let I=\int_1^4 |x-1|+|x-2|+|x-3|dx

I=\int_1^4|x-1|dx+\int_1^4|x-2|dx+\int_1.^4|x-3|dx

=\int_1^4(x-1)dx+\int_1^2-(x-2)dx+\int_2^4(x-2)dx+\int_1^3-(x-3)dx+\int_3^4(x-3)dx

=(\frac{x^2}{2}-x)_1^4-(\frac{x^2}{2}-2x)_1^2 +(\frac{x^2}{2}-2x)_2^4-(\frac{x^2}{2}-3x)_1^3+(\frac{x^2}{2}-3x)_3^4

=[(8-4)-(\frac{1}{2}-1)]-[(2-4)-(\frac{1}{2}-2)]+[(8-8)-(2-4)]-[(\frac{9}{2}-9)-(\frac{1}{2}-3)]+[(8-12)-(\frac{9}{2}-9)]

=[4+\frac{1}{2}]-[-2+\frac{3}{2}]+[0+2]-[-\frac{9}{2}+\frac{5}{2}]+[-4+\frac{9}{2}]

=\frac{9}{2}+\frac{1}{2}+2+2+\frac{1}{2}

=\frac{11}{2}+4

=\frac{19}{2}

Prove the following (Exercises 34 to 39)

Question 34: \int_{\text{1}}^{\text{3}}{\dfrac{\text{dx}}{{{\text{x}}^{\text{2}}}\left( \text{x+1} \right)}}\text{=}\dfrac{\text{2}}{\text{3}}\text{+log}\dfrac{\text{2}}{\text{3}}.

Solution: Let I=\int_{1}^{3}{\dfrac{dx}{{{x}^{2}}\left( x+1 \right)}}

\therefore \dfrac{1}{{{x}^{2}}\left( x+1 \right)}=\dfrac{A}{x}+\dfrac{B}{{{x}^{2}}}+\dfrac{C}{\left( x+1 \right)}--(i)

\Rightarrow 1=Ax\left( x+1 \right)+B\left( x+1 \right)+C\left( {{x}^{2}} \right)

Let x=0

1=0+B(0+1)+0\Rightarrow B=1

Let x=-1

1= 0+0+C(-1)^2

\Rightarrow 1 = C

Let x=1

1=A(1)(1+1)+B(1+1)+C(1)^2

\Rightarrow 1 = 2A+2B+C

\Rightarrow 1 = 2A+2(1)+1

\Rightarrow A=-1

A=-1,\,B=1,\,C=1 respectively.

Putting the value in eq (i) and integrate

I=\int_{1}^{3}{\dfrac{dx}{{{x}^{2}}\left( x+1 \right)}}=\int_{1}^{3}{\left\{ \dfrac{-1}{x}+\dfrac{1}{{{x}^{2}}}+\dfrac{1}{\left( x+1 \right)} \right\}dx}

\Rightarrow I=\left[ -\log x-\dfrac{1}{x}+\log \left( x+1 \right) \right]_{1}^{3}

=\left[ \log \left( \dfrac{x+1}{x} \right)-\dfrac{1}{x} \right]_{1}^{3}

=\left[\log \left( \dfrac{4}{3} \right)-\dfrac{1}{3}\right]-\left[\log \left( 2 \right)-1\right]

\Rightarrow I=\log 4-\log 3-\log 2+\dfrac{2}{3}

=\log 2-\log 3+\dfrac{2}{3}

=\log \left( \dfrac{2}{3} \right)+\dfrac{2}{3}

Hence proved.

Question 35: \int_{\text{0}}^{\text{1}}{\text{x}{{\text{e}}^{\text{x}}}\text{dx}}\text{=1}.

Solution: Let I=\int_{0}^{1}{x{{e}^{x}}dx}

\Rightarrow I=x\int_{0}^{1}{{{e}^{x}}dx}-\int_{0}^{1}{\left\{ \left( \dfrac{d\left( x \right)}{dx} \right)\int{{{e}^{x}}}dx \right\}}dx

=\left[ x{{e}^{x}} \right]_{0}^{1}-\left[ {{e}^{x}} \right]_{0}^{1}

=e-e+1=1

Hence proved.

Question 36: \int_{-1}^{1}{{{\text{x}}^{\text{17}}}\text{co}{{\text{s}}^{\text{4}}}\text{xdx}}\text{=0}.

Solution: Let I= \int_{-1}^{1}{{{x}^{17}}{{\cos }^{4}}xdx}

Now, consider f(x)={{x}^{17}}{{\cos }^{4}}x

\therefore f\left( -x \right)={{\left( -x \right)}^{17}}{{\cos }^{4}}\left( -x \right)

=-{{x}^{17}}{{\cos }^{4}}x=-f\left( x \right)

\Rightarrow f( x) is an odd function and hence it is clearly known to us that when f(x) is an odd function, then \int_{-a}^{a}{f\left( x \right)dx}=0.

\therefore I=\int_{1}^{-1}{{{x}^{17}}{{\cos }^{4}}xdx}=0

Hence proved.

Question 37: \int_{\text{0}}^{\frac{\pi}{2}}\sin^3xdx\text{=}\dfrac{\text{2}}{\text{3}}.

Solution: Let I=\int_{0}^{\dfrac{\pi }{2}}{{{\sin }^{3}}xdx}

\Rightarrow I=\int_{0}^{\frac{\pi }{2}}{{{\sin }^{2}}x\sin xdx}

=\int_{0}^{\frac{\pi }{2}}{\left( 1-{{\cos }^{2}}x \right)\sin xdx}

=\int_{0}^{\frac{\pi }{2}}{\sin xdx}-\int_{0}^{\frac{\pi }{2}}{{{\cos }^{2}}x\sin xdx}

Let \cos x=t

\Rightarrow -\sin xdx=dt

\Rightarrow \sin xdx=-dt

I=-[\cos x]_0^{\frac{\pi}{2}}+\int_0^{\frac{\pi}{2}}t^2dt

=-[\cos \frac{\pi}{2}-\cos 0]+[\frac{t^3}{3}]_0^{\frac{\pi}{2}}

=-[0-1]+\frac{1}{3}[\cos^3x]_0^{\frac{\pi}{2}}

=1+\frac{1}{3}[\cos^3\frac{\pi}{2}-\cos^30]

=1+\frac{1}{3}[0-1]=1-\frac{1}{3}

=\frac{2}{3}

Hence proved.

Queston 38: \int_{\text{0}}^{\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}}{\text{2ta}{{\text{n}}^{\text{3}}}\text{xdx}}\text{=1-log2}.

Solution: Let I=\int_{0}^{\frac{\pi }{4}}{2{{\tan }^{3}}xdx}

\Rightarrow I=\int_{0}^{\dfrac{\pi }{4}}{2{{\tan }^{2}}x\tan xdx}

=2\int_{0}^{\dfrac{\pi }{4}}{\left( {{\sec }^{2}}x -1\right)\tan xdx}

=2\int_{0}^{\dfrac{\pi }{4}}{{{\sec }^{2}}x\tan xdx}-2\int_{0}^{\dfrac{\pi }{4}}{\tan xdx}

Let \tan x=t

\Rightarrow \sec^2xdx=dt

When x =0, t=0 and when x=\frac{\pi}{4},t=1

I=2\int_0^1tdt-2\left[ \log \sec x \right]_{0}^{\dfrac{\pi }{4}}

=2[\frac{t^2}{2}]_0^1-2\left[ \log \sec \dfrac{\pi }{4}-\log \cos 0 \right]

=[1-0]-2[\log \sqrt{2}-0]

=1-2(\frac{1}{2})\log 2

=1-\log 2

Hence proved

Question 39: \int_{\text{0}}^{\text{1}}{\text{si}{{\text{n}}^{-1}}\text{xdx}}\text{=}\frac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\text{-1}.

Solution: Let I= \int_{0}^{1}{{{\sin }^{-1}}xdx}

\Rightarrow I=\int_{0}^{1}{{{\sin }^{-1}}x.1dx}

\Rightarrow I=\sin^{-1}x\int_0^1 1dx-\int_0^1\left[\frac{d}{dx}\sin^{-1}x\int 1dx\right]dx

=\left[ {{\sin }^{-1}}x.x \right]_{0}^{1}-\int_{0}^{1}{\dfrac{1}{\sqrt{1-{{x}^{2}}}}xdx}

=\left[ x{{\sin }^{-1}}x \right]_{0}^{1}+\dfrac{1}{2}\int_{0}^{1}{\dfrac{\left( -2x \right)}{\sqrt{1-{{x}^{2}}}}dx}

Let 1-{{x}^{2}}=t

\therefore \left( -2x \right)dx=dt

when x=0,\,t=1 and when x=1,\,t=0.

\therefore I=\left[ x{{\sin }^{-1}}x \right]_{0}^{1}+\dfrac{1}{2}\int_{0}^{1}{\dfrac{dt}{\sqrt{t}}}

=\left[ x{{\sin }^{-1}}x \right]_{0}^{1}+\dfrac{1}{2}\left[ 2\sqrt{t} \right]_{1}^{0}

={{\sin }^{-1}}1-\sqrt{1}

=\dfrac{\pi }{2}-1

Hence proved.

Question 40: Evaluate \int_{\text{0}}^{\text{1}}{{{\text{e}}^{\text{2-3x}}}}dx as a limit of sum.

Solution: Let I=\int_{0}^{1}{{{e}^{2-3x}}}dx

\int_{a}^{b}{f(x)dx}=\left( b-a \right)\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ f\left( a \right)+f(a+h)+...+f(a+(n-1)h) \right],

where, h=\dfrac{b-a}{n}

In this case, a=0,\,b=1,\,f\left( x \right)={{e}^{2-3x}}

\Rightarrow h=\dfrac{1-0}{n}=\dfrac{1}{n}

\therefore \int_{0}^{1}{{{e}^{2-3x}}dx}=\left( 1-0 \right)\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ f\left( 0 \right)+f(0+h)+...+f(0+(n-1)h) \right]

\Rightarrow \int_{0}^{1}{{{e}^{2-3x}}dx}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ {{e}^{2}}+{{e}^{2-3h}}+...+{{e}^{2-3\left( n-1 \right)h}} \right]

=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ {{e}^{2}}\left( 1+{{e}^{-3h}}+{{e}^{-6h}}...+{{e}^{-3\left( n-1 \right)h}} \right) \right]

\Rightarrow \int_{0}^{1}{{{e}^{2-3x}}dx}=\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{1}{n}\left[ {{e}^{2}}\left( \dfrac{1-{{e}^{\dfrac{-3}{n}.n}}}{1-{{e}^{\dfrac{-3}{n}}}} \right) \right]

\Rightarrow \int_{0}^{1}{{{e}^{2-3x}}dx}={{e}^{2}}\left( {{e}^{-3}}-1 \right)\underset{n\to \infty }{\mathop{\lim }}\,\dfrac{-1}{3}\left[ \dfrac{\dfrac{-3}{n}}{{{e}^{\dfrac{-3}{n}}}-1} \right]

=\dfrac{-{{e}^{2}}\left( {{e}^{-3}}-1 \right)}{3}

=\dfrac{-{{e}^{-1}}+{{e}^{2}}}{3}

=\dfrac{1}{3}\left( {{e}^{2}}-\dfrac{1}{e} \right)

Choose the correct answers in Exercises 41 to 44.

Question 41: \int{\dfrac{\text{dx}}{{{\text{e}}^{\text{x}}}\text{+}{{\text{e}}^{\text{-x}}}}} is equal to

A. \text{ta}{{\text{n}}^{\text{-1}}}\left( {{\text{e}}^{\text{x}}} \right)\text{+C}

B. \text{ta}{{\text{n}}^{\text{-1}}}\left( {{\text{e}}^{\text{-x}}} \right)\text{+C}

C. \text{log}\left( {{\text{e}}^{\text{x}}}\text{-}{{\text{e}}^{\text{-x}}} \right)\text{+C}

D. \text{log}\left( {{\text{e}}^{\text{x}}}\text{+}{{\text{e}}^{\text{-x}}} \right)\text{+C}

Solution: The correct answer is option (A)

Let I=\int{\dfrac{dx}{{{e}^{x}}+{{e}^{-x}}}}.

Let {{e}^{x}}=t

\therefore {{e}^{x}}dx=dt

\therefore I=\int{\dfrac{dx}{{{e}^{x}}+{{e}^{-x}}}}

=\int{\dfrac{1}{1+{{t}^{2}}}dt}

=\int{{{\tan }^{-1}}\operatorname{t}dt}+C, where C is any arbitrary constant.

Hence, the correct answer is option (A).

Question 42: \int{\dfrac{\cos2x}{{{\left( \text{sinx+cosx} \right)}^{\text{2}}}}\text{dx}} is equal to

A. \dfrac{\text{-1}}{\text{sinx+cosx}}\text{+C}

B. \text{log}\left| \text{sinx+cosx} \right|\text{+C}

C. \text{log}\left| \text{sinx-cosx} \right|\text{+C}

D. \dfrac{\text{1}}{{{\left( \text{sinx+cosx} \right)}^{\text{2}}}}\text{+C}

Solution : The correct answer is option (B)

Let I=\int{\dfrac{\cos 2x}{{{\left( \sin x+\cos x \right)}^{2}}}dx}.

=\int{\dfrac{\cos ^2x-\sin^2x}{{{\left( \sin x+\cos x \right)}^{2}}}dx}.

\Rightarrow I=\int{\dfrac{(\sin x+\cos x)(\cos x-\sin x)}{{{\left( \sin x+\cos x \right)}^{2}}}dx}

=\int{\dfrac{(\cos x-\sin x)}{\left( \sin x+\cos x \right)}dx}

Let \left( \sin x+\cos x \right)=t

\therefore (\cos x-\sin x)dx=dt

\therefore I=\int{\dfrac{1}{t}}dt

=\log \left| t \right|+C

={\log \left| \cos x+\sin x \right|+C}, where C is any arbitrary constant.

Hence, the correct answer is option (B).

Question 43: If \text{f}\left( \text{a+b-x} \right)\text{=f}\left( \text{x} \right)\text{,}\,then \int_{\text{a}}^{\text{b}}{\text{xf}\left( \text{x} \right)\text{dx}} is equal to

A. \dfrac{\text{a+b}}{\text{2}}\int_{\text{a}}^{\text{b}}{\text{f}\left( \text{b-x} \right)\text{dx}}

B. \dfrac{\text{a+b}}{\text{2}}\int_{\text{a}}^{\text{b}}{\text{f}\left( \text{b+x} \right)\text{dx}}

C. \dfrac{\text{b-a}}{\text{2}}\int_{\text{a}}^{\text{b}}{\text{f}\left( \text{x} \right)\text{dx}}

D. \dfrac{\text{a+b}}{\text{2}}\int_{\text{a}}^{\text{b}}{\text{f}\left( \text{x} \right)\text{dx}}

Solution: The correct answer is option (D)

Let I=\int_{a}^{b}{xf\left( x \right)dx}--(i)

\left[ \because \int_{a}^{b}{f\left( x \right)dx}=\int_{a}^{b}{f\left( a+b-x \right)dx} \right]

I=\int_{a}^{b}{\left( a+b-x \right)f\left( a+b-x \right)dx}--(ii)

From (i) and (ii)

\Rightarrow I=\int_{a}^{b}{\left( a+b-x \right)f\left( x \right)dx}=\left( a+b \right)\int_{a}^{b}{f\left( x \right)dx}-I using \left( 1 \right)

\Rightarrow 2I=\left( a+b \right)\int_{a}^{b}{f\left( x \right)dx}

\Rightarrow I=\dfrac{\left( a+b \right)}{2}\int_{a}^{b}{f\left( x \right)dx}

Hence, the correct answer is option (D).

Question 44: The value of \int_{\text{0}}^{\text{1}}{\text{ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{2x-1}}{\text{1+x-}{{\text{x}}^{\text{2}}}} \right)\text{dx}} is equal to

A. \text{1}

B. \text{0}

C. \text{-1}

D. \dfrac{\pi}{4}

Solution : The correct answer is option (D).

Let I=\int_{0}^{1}{{{\tan }^{-1}}\left( \dfrac{2x-1}{1+x-{{x}^{2}}} \right)dx}

\Rightarrow I=\int_{0}^{1}{{{\tan }^{-1}}\left( \dfrac{x-\left( 1-x \right)}{1+x\left( 1-x \right)} \right)dx}

=\int_{0}^{1}{{{\tan }^{-1}}\left( x \right)-{{\tan }^{-1}}\left( 1-x \right)dx}

\Rightarrow I=\int_0^1\tan^{-1}xdx-\int_0^{1}\tan^{-1}(1-x)dx

\Rightarrow I= \int_0^1\tan^{-1}(1-x)dx-\int_0^{1}\tan^{-1}(1-x)dx

\Rightarrow I=0

Hence, the correct answer is option (D).

integration multiple choice question

gmath.in

 

Leave a Comment