Ex 7.9 integration ncert maths solution class 12

Exercise 7.9(Integration)

Evaluate the definite integrals in Exercises 1 to 20.(Ex 7.9 integration ncert maths solution class 12)

Ex 7.9 integration ncert maths solution class 12

Question 1: \int_{-1}^1(x+1) d x

Solution: Let I=\int_{-1}^1(x+1) d x

=\left[\frac{x^2}{2}+x\right]_{-1}^1

=\left(\frac{1}{2}+1\right)-\left(\frac{1}{2}-1\right)

=\frac{1}{2}+1-\frac{1}{2}+1=2

Question 2: \int_2^3 \frac{1}{x} d x

Solution: I=\int \frac{1}{x} d x

=\left.\log x\right|_2 ^3

=\log |3|-\log |2|=\log \left|\frac{3}{2}\right|

Question 3:\int_1^2\left(4 x^3-5 x^2+6 x+9\right) d x

Solution: I=\int_1^2\left(4 x^3-5 x^2+6 x+9\right) d x

=\left[4\left(\frac{x^4}{4}\right)-5\left(\frac{x^3}{3}\right)+6\left(\frac{x^2}{2}\right)+9(x)\right]_1^2

=\left[x^4-\frac{5 x^3}{3}+3 x^2+9 x\right]_1^2

=\left[2^4-\frac{5(2)^3}{3}+3(2)^2+9(2)\right]-\left[(1)^4-\frac{5(1)^3}{3}+3(1)^2+9(1)\right]

=\left\{16-\frac{40}{3}+12+18\right\}-\left\{1-\frac{5}{3}+3+9\right\}

=16-\frac{40}{3}+12+18-1+\frac{5}{3}-3-9

=33-\frac{35}{3}=\frac{64}{3}

Question 4: \int_0^{\frac{\pi}{4}} \sin 2 x d x

Solution: I=\int_0^{\frac{\pi}{4}} \sin 2 x d x

=\left[\frac{-\cos 2 x}{2}\right]_0^{\frac{\pi}{4}}

=-\frac{1}{2}\left[\cos 2\left(\frac{\pi}{4}\right)-\cos 0\right]

=-\frac{1}{2}\left[\cos \left(\frac{\pi}{2}\right)-\cos 0\right]

=-\frac{1}{2}(0-1)=\frac{1}{2}

Question 5: \int_0^{\frac{\pi}{4}} \cos 2 x d x

Solution: I=\int_0^{\frac{\pi}{4}} \cos 2 x d x=\left[\frac{\sin 2 x}{2}\right]_0^\frac{\pi}{4}

=\frac{1}{2}\left[\sin 2\left(\frac{\pi}{2}\right)-\sin 0\right]

=\frac{1}{2}[\sin \pi-\sin 0]

=\frac{1}{2}(0-0)=0

Question 6: \int_4^5 e^x d x

Solution: I=\int_4^5 e^x d x

=\left[e^x\right]_4^5

=e^5-e^4=e^4(e-1)

Question 7: \int_0^{\frac{\pi}{4}} \tan x d x

Solution : I=\int_0^{\frac{\pi}{4}} \tan x d x=[-\log |\cos x|]_0^{\frac{\pi}{4}}

=-\log \left|\cos \frac{\pi}{4}\right|+\log |\cos 0|

=-\log \left|\frac{1}{\sqrt{2}}\right|+\log |1|

=-\log (2)^{-\frac{1}{2}}=\frac{1}{2} \log 2

Question 8: \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \operatorname{cosec} x d x

Solution : I=\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \operatorname{cosec} x d x

=[\log |\operatorname{cosec} x-\cot x|]_{\frac{\pi}{6}}^{\frac{\pi}{4}}

=\log \left|\operatorname{cosec} \frac{\pi}{4}-\cot \frac{\pi}{4}\right|-\log \left|\operatorname{cosec} \frac{\pi}{6}-\cot \frac{\pi}{6}\right|

=\log |\sqrt{2}-1|-\log |2-\sqrt{3}|

=\log \left(\frac{\sqrt{2}-1}{2-\sqrt{3}}\right)

Question 9: \int_0^1 \frac{d x}{\sqrt{1-x^2}}

Solution :I=\int_0^1 \frac{d x}{\sqrt{1-x^2}}

=\left[\sin ^{-1} x\right]_0^1

=\sin ^{-1}(1)-\sin ^{-1}(0)

=\frac{\pi}{2}-0=\frac{\pi}{2}

Question 10: \int_0^1 \frac{d x}{1+x^2}

Solution: Let I=\int_0^1 \frac{d x}{1+x^2}

=\left[\tan ^{-1} x\right]_0^1

=\tan ^{-1}(1)-\tan ^{-1}(0)=\frac{\pi}{4}

Question 11: \int_0^1 \frac{d x}{x^2-1}

Solution: Let I=\int_0^1 \frac{d x}{x^2-1}

=\left[\frac{1}{2} \log \left|\frac{x-1}{x+1}\right|\right]_0^1

=\frac{1}{2}\left[\log \left|\frac{3-1}{3+1}\right|-\log \left|\frac{3-1}{3+1}\right|\right]

=\frac{1}{2}\left[\log \left|\frac{2}{4}\right|-\log \left|\frac{1}{3}\right|\right]

=\frac{1}{2}\left[\log \frac{1}{2}-\log \frac{1}{3}\right]

=\frac{1}{2}\left[\log \frac{3}{2}\right]

Question 12: \int_0^{\frac{\pi}{2}} \cos ^2 x d x

Solution: I=\int_0^{\frac{\pi}{2}} \cos ^2 x d x

=\int_0^{\frac{\pi}{2}}\left(\frac{1+\cos 2 x}{2}\right) d x

=\left[\frac{x}{2}+\frac{\sin 2 x}{4}\right] \frac{\pi}{2}

=\left[\frac{1}{2}\left(x+\frac{\sin 2 x}{2}\right)\right] \frac{\pi}{2}

=\frac{1}{2}\left[\left(\frac{\pi}{2}-\frac{\sin \pi}{2}\right)-\left(0+\frac{\sin \pi}{2}\right)\right]

=\frac{1}{2}\left[\frac{\pi}{2}+0-0-0\right]=\frac{\pi}{4}

Question 13: \int_2^3 \frac{x d x}{x^2+1}

Solution : I=\int_2^3 \frac{x}{x^2+1} d x

=\frac{1}{2} \int_2^3 \frac{2 x}{x^2+1} d x

=\left[\frac{1}{2} \log \left(1+x^2\right)\right]_2^3

=\frac{1}{2}\left[\log \left\{1+(3)^2\right\}-\log \left\{1+(2)^2\right\}\right]

=\frac{1}{2}[\log (10)-\log (5)]

=\frac{1}{2}\left[\log \frac{10}{5}\right]=\frac{1}{2} \log 2

Question 14: \int_0^1 \frac{2 x+3}{5 x^2+1} d x

Solution: I=\int_0^1 \frac{2 x+3}{5 x^2+1} d x

=\frac{1}{5} \int_0^1 \frac{5(2 x+3)}{5 x^2+1} d x

=\frac{1}{5} \int_0^1 \frac{10 x+15}{5 x^2+1} d x

=\frac{1}{5} \int_0^1 \frac{10 x}{5 x^2+1} d x+3 \int_0^1 \frac{1}{5 x^2+1} d x

=\frac{1}{5} \int_0^1 \frac{10 x}{5 x^2+1} d x+3 \int_0^1 \frac{1}{5\left(x^2+\frac{1}{5}\right)} d x

=\left[\frac{1}{5} \log \left(5 x^2+1\right)+\frac{3}{5} \cdot \frac{1}{\frac{1}{\sqrt{5}}} \tan ^{-1} \frac{x}{\frac{1}{\sqrt{5}}}\right]_0^1

=\left[\frac{1}{5} \log \left(5 x^2+1\right)+\frac{3}{\sqrt{5}} \tan ^{-1}(\sqrt{5} x)\right]_0^1

I=\left\{\frac{1}{5} \log (5+1)+\frac{3}{\sqrt{5}} \tan ^{-1}(\sqrt{5})\right\}-\left\{\frac{1}{5} \log (1)+\frac{3}{\sqrt{5}} \tan ^{-1}(0)\right\}

=\frac{1}{5} \log (6)+\frac{3}{\sqrt{5}} \tan ^{-1}(\sqrt{5})

Question 15: \int_0^1 x e^{x^2} d x

Solution: I=\int_0^1 x e^{x^2} d x

Put x^2=t \quad \Rightarrow 2 x d x=d t

If x \rightarrow 0, t \rightarrow 0 \quad and if \quad x \rightarrow 1, t \rightarrow 1

\quad I=\frac{1}{2} \int_0^1 e^t d t=\frac{1}{2}\left[e^t\right]_0^1=\frac{1}{2} e-\frac{1}{2} e^0=\frac{1}{2}(e-1)

Question 16: \int_1^2 \dfrac{5x^2}{x^2+4x+3}dx

Solution: Let I=\int_1^2 \dfrac{5x^2}{x^2+4x+3}d

=\int_1^2 \dfrac{5x^2}{(x+1)(x+3)}d

Since, \dfrac{5x^2}{(x+1)(x+3)}=5+\dfrac{A}{(x+1)}+\dfrac{B}{x+3}--(i)

\Rightarrow \dfrac{5x^2}{(x+1)(x+3)}=\dfrac{5(x+1(x+3)+A(x+3)+B(x+1)}{(x+1)(x+3)}

\Rightarrow 5x^2=5(x+1)(x+3)+A(x+3)+B(x+1)

Let x =-1

5\times (-1)^2 = 0+A(-1+3)+0

\Rightarrow 5 = 2A

\Rightarrow A =5/2

Let x =-3

5\times (-3)^2 = 0+A(-3+3)+B(-3+1)

\Rightarrow 45 = -2B

\Rightarrow B =-45/2

Putting in (i) and integrate

\displaystyle\int_1^2\dfrac{5x^2}{(x+1)(x+3)}dx=\int_1^2\left[5+\dfrac{5/2}{(x+1)}+\dfrac{-45/2}{x+3}\right]dx

=\left[5x+\frac{5}{2}\log|x+1|-\frac{45}{2}\log|x+3|\right]_1^2

=\left[(5\times 2+\frac{5}{2}\log|2+1|-\frac{45}{2}\log|2+3|)-(5\times 1+\frac{5}{2}\log|1+1|-\frac{45}{2}\log|1+3|)\right]

=5+\frac{5}{2}\log\frac{3}{2}-\frac{45}{2}\log\frac{5}{4}

Question 17: \int_0^{\frac{\pi}{4}}\left(2 \sec ^2 x+x^3+2\right) d x

Solution : I=\int_0^{\frac{\pi}{4}}\left(2 \sec ^2 x+x^3+2\right) d x

=\left[2 \tan x+\frac{x^4}{4}+2 x\right]_0^{\frac{\pi}{4}}

=\left[\left\{2 \tan \frac{\pi}{4}+\frac{1}{4}\left(\frac{\pi}{4}\right)^4+2\left(\frac{\pi}{4}\right)\right\}-\{2 \tan 0+0+0\}\right]

=2 \tan \frac{\pi}{4}+\frac{\pi^4}{4^5}+\frac{\pi}{2}

=2+\frac{\pi}{2}+\frac{\pi^4}{1024}

Question 18: \int_0^\pi\left(\sin ^2 \frac{x}{2}-\cos ^2 \frac{\pi}{2}\right) d x

Solution: LetI=\int_0^\pi\left(\sin ^2 \frac{x}{2}-\cos ^2 \frac{\pi}{2}\right) d x

=-\int_0^\pi\left(\cos ^2 \frac{x}{2}-\sin ^2 \frac{\pi}{2}\right) d x=-\int_0^\pi \cos x d x

=-[\sin x]=-[\sin \pi-\sin 0]=-[0-0]=0

Question 19: \int_0^2 \frac{6 x+3}{x^2+4} d x

Solution: Let I=\int_0^2 \frac{6 x+3}{x^2+4} d x

=3 \int_0^2 \frac{2 x+1}{x^2+4} d x

=3 \int_0^2 \frac{2 x}{x^2+4} d x+3 \int_0^2 \frac{1}{x^2+4}

=\left[3 \log \left(x^2+4\right)+\frac{3}{2} \tan ^{-1} \frac{x}{2}\right]_0^2

=\left\{3 \log \left(2^2+4\right)+\frac{3}{2} \tan ^{-1}\left(\frac{2}{2}\right)\right\}-\left\{3 \log (0+4)+\frac{3}{2} \tan ^{-1}\left(\frac{0}{2}\right)\right\}

=3 \log 8+\frac{3}{2} \tan ^{-1} 1-3 \log 4-\frac{3}{2} \tan ^{-1} 0

=3 \log 8+\frac{3}{2} \tan ^{-1}\left(\frac{\pi}{4}\right)-3 \log 4-0

=3 \log \left(\frac{8}{4}\right)+\frac{3 \pi}{4}

=3 \log 2+\frac{3 \pi}{4}

Question 20: \int_0^1\left(x e^x+\sin \frac{\pi x}{4}\right) d x

Solution: Let I=\int_0^1\left(x e^x+\sin \frac{\pi x}{4}\right) d x

\int\left(x e^x+\sin \frac{\pi x}{4}\right) d x=x \int e^x d x-\int\left\{\left(\frac{d}{d x} x\right) \int e^x d x\right\} d x+\left\{\frac{-\cos \frac{\pi x}{4}}{\frac{\pi}{4}}\right\}

=x e^x-\int e^x d x-\frac{4}{\pi} \cos \frac{\pi x}{4}

=x e^x-e^x-\frac{4}{\pi} \cos \frac{\pi x}{4}

Therefore,

I=\left[x e^x-e^x-\frac{4}{\pi} \cos \frac{\pi x}{4}\right]_0^1

=\left(1 \cdot e^1-e^1-\frac{4}{\pi} \cos \frac{\pi}{4}\right)-\left(0 \cdot e^0-e^0-\frac{4}{\pi} \cos 0\right)

=e-e-\frac{4}{\pi}\left(\frac{1}{\sqrt{2}}\right)+1+\frac{4}{\pi}

=1+\frac{4}{\pi}-\frac{2 \sqrt{2}}{\pi}

Question 21: \int_1^{\sqrt{3}} \frac{d x}{1+x^2} \text { equals }

(A) \frac{\pi}{3}

(B) \frac{2 \pi}{3}

(C) \frac{\pi}{6}

(D) \frac{\pi}{12}

Solution : The correct answer is (D)

Let I=\int_1^{\sqrt{3}} \frac{d x}{1+x^2}=\left[\tan ^{-1} x\right]^{\sqrt{3}}

=\tan ^{-1} \sqrt{3}-\tan ^{-1} 1

=\frac{\pi}{3}-\frac{\pi}{4}=\frac{\pi}{12}

Hence, the correct answer is (D).

Question 22: \int_0^{\frac{2}{3}} \frac{d x}{4+9 x^2} \text { equals }

(A) \frac{\pi}{6}

(B) \frac{\pi}{12}

(C) \frac{\pi}{24}

(D) \frac{\pi}{4}

Solution : The correct answer is (C)

Let I=\int_0^{\frac{2}{3}} \frac{d x}{4+9 x^2}=\int_0^{\frac{2}{3}} \frac{d x}{2^2+(3 x)^2}

Let 3 x=t \quad \Rightarrow 3 d x=d t
Therefore,

\int \frac{d x}{(2)^2+(3 x)^2}=\frac{1}{3} \int \frac{d x}{(2)^2+(t)^2}

=\frac{1}{3}\left[\frac{1}{2} \tan ^{-1} \frac{t}{2}\right]

=\frac{1}{6} \tan ^{-1}\left(\frac{3 x}{2}\right)

Now,

I=\left[\frac{1}{6} \tan ^{-1}\left(\frac{3 x}{2}\right)\right] \frac{2}{3}

=\frac{1}{6} \tan ^{-1}\left(\frac{3}{2} \cdot \frac{2}{3}\right)-\frac{1}{6} \tan ^{-1} 0

=\frac{1}{6} \times \frac{\pi}{4}=\frac{\pi}{24}

Hence, the correct answer is (C).

 

Ex 7.7 integration ncert maths solution class 12

Ex 7.6 integration ncert maths solution class 12

Leave a Comment