class 12 maths ex 6.2 ncert solution

           Exercise 6.2

class 12 maths ex 6.2 ncert solution

Question 1: Show that the function given by f(x)=3 x+17 is strictly increasing on \mathbf{R}.

Solution: f(x)=3 x+17

\Rightarrow f'(x)=3>0, \quad \text { For all } x \in \mathbf{R}

Therefore, the function is strictly increasing on \mathbf{R}.

Question 2: Show that the function given by f(x)=e^{2 x} is strictly increasing on \mathbf{R}.

Solution: f(x)=e^{2 x}

\Rightarrow f^{\prime}(x)=2 e^{2 x}>0, For all x \in \mathbf{R}

Therefore, the function is strictly increasing on \mathbf{R}.

Question 3: Show that the function given by f(x)=\sin x is

(a) strictly increasing in \left(0, \frac{\pi}{2}\right)

(b) strictly decreasing in \left(\frac{\pi}{2}, \pi\right)

(c) neither increasing nor decreasing in (0, \pi).

Solution : f(x)=\sin x

\Rightarrow f'(x)=\cos x

(a) f'(x)=\cos x>0, \quad For all x \in\left(0, \frac{\pi}{2}\right)

Therefore, the function is strictly increasing on \left(0, \frac{\pi}{2}\right).

(b) f^{\prime}(x)=\cos x<0, For all x \in\left(\frac{\pi}{2}, \pi\right)

Therefore, the function is strictly decreasing on \left(\frac{\pi}{2}, \pi\right).

(c) f^{\prime}(x)=\cos x>0, \quad For all x \in\left(0, \frac{\pi}{2}\right)

and f^{\prime}(x)=\cos x<0, For all x \in\left(\frac{\pi}{2}, \pi\right)

Therefore, the function is neither increasing nor decreasing on (0, \pi).

Question 4: Find the intervals in which the function f given by f(x)=2 x^2-3 x is

(a) strictly increasing

(b) strictly decreasing

Solution : f(x)=2 x^2-3 x

\Rightarrow f^{\prime}(x)=4 x-3

If f'(x)=0

\Rightarrow 4 x-3=0 \Rightarrow x=\frac{3}{4}

(a) f^{\prime}(x)=4 x-3>0, For all x \in\left(\frac{3}{4}, \infty\right),

therefore, the function is strictly increasing on \left(\frac{3}{4}, \infty\right).

(b) f^{\prime}(x)=4x-3<0, For all x \in\left(-\infty, \frac{3}{4}\right),

therefore, the function is strictly decreasing on \left(-\infty, \frac{3}{4}\right).

Question 5: Find the intervals in which the function f given by f(x)=2 x^3-3 x^2-36 x+7 is

(a) strictly increasing

(b) strictly decreasing

Solution: f(x)=2 x^3-3 x^2-36 x+7

\Rightarrow f'(x)=6 x^2-6 x-36

=6\left(x^2-x-6\right)

=6(x-3)(x+2)

Now f'(x)=0 \Rightarrow 6(x-3)(x+2)=0

\Rightarrow x=-2,3

x=-2 and x=3 divides the real number line into three intervals (-\infty,-2),(-2,3) and (3, \infty).

    \[\begin{tabular}{|c|c|c|} \hline Intervals & Sign of $f'(x)$ & Nature of the function $f$ \\ \hline$(-\infty,-2)$ & $(-)(-)>0$ & $f$ is increasing \\ \hline$(-2, 3)$ & $(-)(+)<0$ & $f$ is decreasing \\ \hline$(3, \infty)$ & $(+)(+)>0$ & $f$ is increasing \\ \hline \end{tabular}\]

(a) Function f is increasing on (-\infty,-2) and (3, \infty).

(b) Function f is decreasing on (-2,3).

Question 6: Find the intervals in which the following functions are strictly increasing or decreasing:

(a) f(x)=x^2+2 x+5

(b) f(x)=10-6 x-2 x^2

(c) f(x)=-2 x^3-9 x^2-12 x+1

(d) f(x)=6-9 x-x^2

(e) f(x)=(x+1)^3(x-3)^3

Solution: (a) f(x)=x^2+2 x+5

\Rightarrow f'(x)=2 x+2

Now f'(x)=0 \Rightarrow 2 x+2=0

\Rightarrow x=-1

f'(x)=2 x+2<0, For all x \in(-\infty,-1),

therefore, the function is strictly decreasing on (-\infty,-1).

f'(x)=2 x+2>0, For all x \in(-1, \infty),

therefore, the function is strictly increasing on (-1, \infty).

(b) f(x)=10-6 x-2 x^2

\Rightarrow f'(x)=-6-4 x

Now f'(x)=0\Rightarrow-6-4 x=0

\Rightarrow x=-\frac{3}{2}

f'(x)=-6-4 x>0, For all x \in\left(-\infty,-\frac{3}{2}\right),

therefore, the function is strictly increasing on \left(-\infty,-\frac{3}{2}\right).

f'(x)=-6-4 x<0, For all x \in\left(-\frac{3}{2}, \infty\right),

therefore, the function is strictly decreasing on \left(-\frac{3}{2}, \infty\right).

(c) f(x)=-2 x^3-9 x^2-12 x+1

\Rightarrow f'(x)=-6 x^2-18 x-12

=-6\left(x^2+3 x+2\right)

=-6(x+2)(x+1)

If f'(x)=0 \Rightarrow-6(x+2)(x+1)=0

\Rightarrow x=-2,-1

x=-2 and x=-1 divides the number line into three intervals (-\infty,-2),(-2,-1) and (-1, \infty).

    \[\begin{tabular}{|c|c|c|} \hline Interval & Sign of $f'(x)$ & Nature of $f$ \\ \hline$(-\infty,-2)$ & $(-)(-)>0$ & $f$ is increasing \\ \hline$(-2,-1)$ & $(+)(-)<0$ & $f$ is decreasing \\ \hline$(-1, \infty)$ & $(+)(+)>0$ & $f$ is increasing \\ \hline \end{tabular}\]

Function f is increasing on (-\infty,-2) \cup(-1, \infty) and decreasing on (-2,-1).

(d) f(x)=6-9 x-x^2

\Rightarrow f'(x)=-9-2 x

Now f'(x)=0

\Rightarrow-9-2 x=0

\Rightarrow x=-\frac{9}{2}

f'(x)=-9-2 x>0, For all x \in\left(-\infty,-\frac{9}{2}\right),

therefore, the function is strictly increasing on \left(-\infty,-\frac{9}{2}\right).

f'(x)=-9-2 x<0, For all x \in\left(-\frac{9}{2}, \infty\right),

therefore, the function is strictly decreasing on \left(-\frac{9}{2}, \infty\right).

(e) f(x)=(x+1)^3(x-3)^3

\Rightarrow f'(x)=3(x+1)^2(x-3)^3+(x+1)^3 \cdot 3(x-3)^2

=3(x+1)^2(x-3)^2(x-3+x+1)

=3(x+1)^2(x-3)^2(2 x-2)

=6(x+1)^2(x-3)^2(x-1)

Now f'(x)=0

\Rightarrow 6(x+1)^2(x-3)^2(x-1)=0

\Rightarrow x=-1,1,3

x=-1, x=1 and x=3 divides the number lines into four intervals (-\infty,-1),(-1,1),(1,3) and (3, \infty).

    \[\begin{tabular}{|c|c|c|} \hline Intervals & Sign of $f'(x)$ & Nature of $f$ \\ \hline$(-\infty,-1)$ & $(+)(+)(-)<0$ & $f$ is decreasing \\ \hline$(-1,1)$ & $(+)(+)(-)<0$ & $f$ is decreasing \\ \hline$(1,3)$ & $(+)(+)(+)>0$ & $f$ is increasing \\ \hline$(3, \infty)$ & $(+)(+)(+)>0$ & $f$ is increasing \\ \hline \end{tabular}\]

Function f is decreasing on (-\infty, 1) and increasing on (1, \infty).

Question 7: Show that y=\log (1+x)-\frac{2 x}{2+x}, x>-1, is an increasing function of x throughout its domain.

Solution : y=\log (1+x)-\frac{2 x}{2+x}

\Rightarrow \frac{d y}{d x}=\frac{1}{1+x}-\frac{(2+x) \cdot 2-2 x(1)}{(2+x)^2}

=\frac{1}{1+x}-\frac{4}{(2+x)^2}=\frac{(2+x)^2-4(1+x)}{(1+x)(2+x)^2}

\Rightarrow \frac{d y}{d x}=\frac{4+x^2+4 x-4-4 x}{(1+x)(2+x)^2}

=\frac{x^2}{(1+x)(2+x)^2}

x^2>0 and (2+x)^2>0, as these are perfect square and

(1+x)>0 as x>-1.

Therefore, \frac{d y}{d x}>0, if x>-1.

Hence, the function is increasing throughout its domain.

Question 8: Find the values of x for which y=[x(x-2)]^2 is an increasing function.

Solution: y=[x(x-2)]^2 \Rightarrow \frac{d y}{d x}=2[x(x-2)]\cdot \frac{d}{d x}[x(x-2)]

=2[x(x-2)]\frac{d}{dx}(x^2-2x) =2[x(x-2)](2x-2)

=4[x(x-2)(x-1)]

Now f'(x)=0 \Rightarrow 4[x(x-2)(x-1)]=0

\Rightarrow x=0, x=1 and x=2 divides the number line into four intervals (-\infty, 0),(0,1),(1,2) and (2, \infty).

    \[\begin{tabular}{|c|c|c|} \hline Intervals & Sign of $y'(x)$ & Nature of $y$ \\ \hline$(-\infty, 0)$ & $(-)(-)(-)<0$ & $f$ is decreasing \\ \hline$(0,1)$ & $(+)(-)(-)>0$ & $f$ is increasing \\ \hline$(1,2)$ & $(+)(-)(+)<0$ & $f$ is decreasing \\ \hline$(2, \infty)$ & $(+)(+)(+)>0$ & $f$ is increasing \\ \hline \end{tabular}\]

Function y is increasing on (0,1) \cup(2, \infty).

Question 9: Prove that y=\frac{4 \sin \theta}{(2+\cos \theta)}-\theta, is an increasing function of \theta in \left[0, \frac{\pi}{2}\right].

Solution : y=\frac{4 \sin \theta}{(2+\cos \theta)}-\theta

\Rightarrow \frac{d y}{d \theta}=\frac{(2+\cos \theta) \cdot 4 \cos \theta-4 \sin \theta(0-\sin \theta)}{(2+\cos \theta)^2}-1

=\frac{8 \cos \theta+4 \cos ^2 \theta+4 \sin ^2 \theta-(2+\cos \theta)^2}{(2+\cos \theta)^2}

\Rightarrow \frac{d y}{d \theta}=\frac{8 \cos \theta+4-4-\cos ^2 \theta-4 \cos \theta}{(2+\cos \theta)^2}

=\frac{4 \cos \theta-\cos ^2 \theta}{(2+\cos \theta)^2}

=\frac{\cos \theta(4-\cos \theta)}{(2+\cos \theta)^2}

(2+\cos \theta)^2>0, \text { as it is a perfect square. } \cos \theta>0 \text { as } \theta \in\left[0, \frac{\pi}{2}\right] .

(4-\cos \theta)>0, \text { because } 0 \leq \cos \theta \leq 1, \text { for all } \theta \in\left[0, \frac{\pi}{2}\right] .

Therefore, \frac{d y}{d \theta}>0, if \theta \in\left[0, \frac{\pi}{2}\right].

Hence, y is an increasing function of \theta in \left[0, \frac{\pi}{2}\right].

Question 10: Prove that the logarithmic function is strictly increasing on (0, \infty).

Solution: f(x)=\log x

\Rightarrow f^{\prime}(x)=\frac{1}{x}>0, \quad \text { For all } x \in(0, \infty) .

Therefore, the function is strictly increasing on (0, \infty).

Question 11: Prove that the function f given by f(x)=x 2-x+1 is neither strictly increasing nor strictly decreasing on (-1,1).

Solution: f(x)=x^2-x+1

\Rightarrow f'(x)=2 x-1

If f'(x)=0 \Rightarrow 2 x-1=0

\Rightarrow x=\frac{1}{2}

x=\frac{1}{2} divides the interval (-1,1) into two intervals \left(-1, \frac{1}{2}\right) and \left(\frac{1}{2}, 1\right).

f'(x)=2 x-1<0, For all x \in\left(-1, \frac{1}{2}\right),

therefore, the function is strictly decreasing on \left(-1, \frac{1}{2}\right).

f'(x)=\frac{1}{x}>0, For all x \in\left(\frac{1}{2}, 1\right), therefore, the function is strictly increasing on \left(\frac{1}{2}, 1\right).

Therefore, the function is neither increasing nor decreasing on (-1,1).

Question 12: Which of the following functions are strictly decreasing on \left(0, \frac{\pi}{2}\right) ?

(A) \cos x

(B) \cos 2 \mathrm{x}

(C) \cos 3 x

(D) \tan \mathrm{x}

Solution: (A) f(x)=\cos x \Rightarrow f'(x)=-\sin x

f'(x)=-\sin x<0, For all x \in\left(0, \frac{\pi}{2}\right),

therefore, the function is strictly decreasing on \left(0, \frac{\pi}{2}\right).

(B) f(x)=\cos 2 x \Rightarrow f'(x)=-2 \sin 2 x

If x \in\left(0, \frac{\pi}{2}\right), then 2 x \in(0, \pi)

\Rightarrow \sin 2 x>0 if 2 x \in(0, \pi).

Therefore, -\sin 2 x<0 if 2 x \in(0, \pi).

f'(x)=-2 \sin 2 x<0, For all x \in\left(0, \frac{\pi}{2}\right),

therefore, the function is strictly decreasing on \left(0, \frac{\pi}{2}\right).

(C) f(x)=\cos 3 x \Rightarrow f'(x)=-3 \sin 3 x

If x \in\left(0, \frac{\pi}{2}\right), then 3 x \in\left(0, \frac{3 \pi}{2}\right),

\Rightarrow \sin 3 x>0 if 3 x \in(0, \pi).

\Rightarrow -\sin 3 x<0 if 3 x \in(0, \pi) or x \in\left(0, \frac{\pi}{3}\right)

f'(x)=-2 \sin 3 x<0, For all x \in\left(0, \frac{\pi}{3}\right),

therefore, the function is strictly decreasing on \left(0, \frac{\pi}{2}\right).

\sin 3 x<0 if 3 x \in\left(\pi, \frac{3 \pi}{2}\right),

therefore, -\sin 3 x>0 if 3 x \in\left(\pi, \frac{3 \pi}{2}\right) or x \in\left(\frac{\pi}{3}, \frac{\pi}{2}\right)

f^{\prime}(x)=-2 \sin 3 x>0, For all x \in\left(\frac{\pi}{3}, \frac{\pi}{2}\right),

therefore, the function is strictly increasing on \left(\frac{\pi}{3}, \frac{\pi}{2}\right).

Hence, the function is neither increasing nor decreasing on \left(0, \frac{\pi}{2}\right).

(D) f(x)=\tan x \Rightarrow f^{\prime}(x)=\sec ^2 x

f^{\prime}(x)=\sec ^2 x>0, For all x \in\left(0, \frac{\pi}{2}\right),

therefore, the function is strictly increasing on \left(0, \frac{\pi}{2}\right).

Therefore, \cos x and \cos 2 x are decreasing on \left(0, \frac{\pi}{2}\right).

Hence, the option (A) and (B) are correct.

Question 13: On which of the following intervals is the function f given by f(x)=x^{100}+\sin x-1 strictly decreasing?

(A) (0,1)

(B) \left(\frac{\pi}{2}, \pi\right)

(C) \left(0, \frac{\pi}{2}\right)

(D) None of these

Solution: f(x)=x^{100}+\sin x-1

\Rightarrow f'(x)=100 x^{99}+\cos x

(A) 100 x^{99}>0 and \cos x>0, For all x \in(0,1),

therefore, the function is strictly increasing on (0,1).

(B) 100 x^{99}>0 and \cos x<0, For all x \in\left(\frac{\pi}{2}, \pi\right),

\Rightarrow 100 x^{99}>\cos x, for all x \in\left(\frac{\pi}{2}\right., \left.\pi\right).

Therefore, f^{\prime}(x)=100 x^{99}+\cos x>0,

therefore, the function is strictly increasing on \left(\frac{\pi}{2}, \pi\right).

(C) 100 x^{99}>0 and \cos x>0, For all x \in\left(0, \frac{\pi}{2}\right),

therefore, the function is strictly increasing on \left(0, \frac{\pi}{2}\right).

Hence, is function is not decreasing in the given intervals. Hence, the option (D) is correct.

Question 14: Find the least value of a such that the function f given by f(x)=x^2+a x+1 is strictly increasing on (1,2).

Solution : f(x)=x^2+a x+1

\Rightarrow f'(x)=2 x+a

But f is increasing on (1,2)

\Rightarrow f'(x)>0

\Rightarrow 2 x+a>0

\Rightarrow x>-\frac{a}{2}

Here, x>-\frac{a}{2} when x \in(1,2) or 1<x<2,

Therefore, for the least value of a, when the function is increasing on (1,2), we have

-\frac{a}{2}=1

\Rightarrow a=-2

Question 15: Let I be any interval disjoint from (-1,1). Prove that the function f given by f(x)=x+\frac{1}{x} is strictly increasing on I.

Solution: f(x)=x+\frac{1}{x}

\Rightarrow f'(x)=x-\frac{1}{x^2}

=\frac{x^2-1}{x^2}

=\frac{(x-1)(x+1)}{x^2}

If f'(x)=0

\Rightarrow(x-1)(x+1)=0

\Rightarrow x=-1,1

x=-1 and x=1 divides the real value into intervals (-\infty,-1),(-1,1) and (1, \infty).

Only (-\infty,-1) and (1, \infty) are disjoint from (-1,1).

    \[\begin{tabular}{|c|c|c|} \hline Intervals & Sign of $f'(x)$ & Nature of $\boldsymbol{f}$ \\ \hline $(-\infty,-1)$ & $(-)(-)>0$ & $f$ is strictly increasing \\ \hline $(1, \infty)$ & $(+)(+)(+)>0$ & $f$ is strictly increasing\\ \hline\end{tabular}\]

Function f is increasing on (-\infty,-1) \cup(1, \infty).

Hence, the function f is strictly increasing on interval I.

Question 16: Prove that the function f given by f(x)=\log \sin x is strictly increasing on \left(0, \frac{\pi}{2}\right) and strictly decreasing on \left(\frac{\pi}{2}, \pi\right).

Solution: f(x)=\log \sin x

\Rightarrow f^{\prime}(x)=\frac{1}{\sin x} \cdot \cos x=\tan x

f^{\prime}(x)=\tan x>0, for all x \in\left(0, \frac{\pi}{2}\right),

therefore, the function is strictly increasing on \left(0, \frac{\pi}{2}\right).

f^{\prime}(x)=\tan x<0, for all x \in\left(\frac{\pi}{2}, \pi\right),

therefore, the function is strictly decreasing on \left(\frac{\pi}{2}, \pi\right).

Question 17: Prove that the function f given by f(x)=\log \cos x is strictly decreasing on \left(0, \frac{\pi}{2}\right) and strictly increasing on \left(\frac{\pi}{2}, \pi\right).

Solution: f(x)=\log |\cos x|

\Rightarrow f^{\prime}(x)=\frac{1}{\sin x} \cdot \cos x=-\cot x

f^{\prime}(x)=-\cot x<0, for all x \in\left(0, \frac{\pi}{2}\right),

therefore, the function is strictly decreasing on \left(0, \frac{\pi}{2}\right).

f^{\prime}(x)=-\cot x>0, for all x \in\left(\frac{\pi}{2}, \pi\right),

therefore, the function is strictly increasing on \left(\frac{\pi}{2}, \pi\right).

Question 18: Prove that the function given by f(x)=x^3-3 x^2+3 x-100 is increasing in \mathbf{R}.

Solution : f(x)=x^3-3 x^2+3 x-100

\Rightarrow f^{\prime}(x)=3 x^2-6 x+3

=3\left(x^2-2 x+1\right)=3(x-1)^2

3(x-1)^2 \geq 0, as it is perfect square.

Therefore, the function f(x)=x^3-3 x^2+3 x-100 is increasing in \mathbf{R}.

Question 19: The interval in which y=x^2 e^{-x} is increasing is

(A) (-\infty, \infty)

(B) (-2,0)

(C) (2, \infty)

(D) (0,2)

Solution:  y=x^2 e^{-x}

\Rightarrow \frac{d y}{d x}=2 x e^{-x}-x^2 e^{-x}=x e^{-x}(2-x)

Now f'(x)=0

\Rightarrow x e^{-x}(2-x)=0

\Rightarrow x=0,2

x=0 and x=2 divides the real values into three intervals (-\infty, 0),(0,2) and (2, \infty).

    \[\begin{tabular}{|c|c|c|} \hline Intervals & Sign of $y'(x)$ & Nature of function $y$ \\ \hline$(-\infty, 0)$ & $(-)(+)<0$ & $f$ is strictly decreasing \\ \hline$(0,2)$ & $(+)(+)>0$ & $f$ is strictly increasing \\ \hline$(2, \infty)$ & $(+)(-)<0$ & $f$ is strictly decreasing \\ \hline \end{tabular}\]

Function y is strictly increasing on (0,2).

Therefore, the option (D) is correct.


 

application of derivatives multiple choice

Case study application of derivative 4
These days chinese and Indian troops are engaged in aggressive melee, face-offs skirmishes

 

Leave a Comment