Exercise 4.1 ncert math solution class 11

Chapter 4:(Principle Of Mathematical Induction)

Prove the following by using the principle of mathematical induction for all n ∈ N (Exercise 4.1 ncert math solution class 11)

Exercise 4.1 ncert math solution class 11

Question 1:- 1+3+3^{2}+\ldots+3^{n-1}=\frac{\left(3^{n}-1\right)}{2}

Solution: Let P(n) be the given statement

P(n): 1+3+3^{2}+\ldots+3^{n-1}=\frac{\left(3^{n}-1\right)}{2}

For n=1,

L.H.S.=1

R.H.S.=\frac{\left(3^{1}-1\right)}{2}=\frac{2}{2}=1 \text {, which is true. }

Assume that P(k) is true for some positive integer k, such that

P(k): 1+3+3^{2}+\ldots+3^{k-1}=\frac{\left(3^{k}-1\right)}{2}

We will now prove that P(k+1) is also true.

Now, we have

1+3+3^{2}+\ldots+3^{k-1}+3^k=\frac{\left(3^{k+1}-1\right)}{2}

Taking L.H.S.

\Rightarrow \left(1+3+3^{2}+\ldots+3^{k-1}\right)+3^{k}

\Rightarrow \frac{\left(3^{k}-1\right)}{2}+3^{k} \quad \text{From(1)}

\Rightarrow \frac{3^{k}-1+2 \times 3^{k}}{2}

\Rightarrow \frac{(1+2) 3^{k}-1}{2}

\Rightarrow \frac{3 \times 3^{k}-1}{2}

\Rightarrow \frac{3^{k+1}-1}{2}

Thus P(k+1) is true, whenever P(k) is true. Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 2:- 1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}

Solution: Let P(n) be the given statement.

P(n): 1^{3}+2^{3}+3^{3}+\ldots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}

For n=1,

L.H.S.= 1^3 = 1

R.H.S.=\left[\frac{1 \times 2}{2}\right]^{2}=[1]^{2}=1

which is true for n= 1

Let P(k) is true for some positive integer k

P(k):1^{3}+2^{3}+3^{3}+\ldots+k^{3}=\left[\frac{k(k+1)}{2}\right]^{2}--(i)

We will now prove that P(k+1) is also true.

Now, we have

1^{3}+2^{3}+3^{3}+\ldots+k^3+(k+1)^{3}=\left[\frac{(k+1)(k+2)}{2}\right]^{2}

Taking L.H.S.

\left(1^{3}+2^{3}+3^{3}+\ldots+k^{3}\right)+(k+1)^{3}

\Rightarrow {\left[\frac{k(k+1)}{2}\right]^{2}+(k+1)^{3} \quad \ldots[\text { from }(1)] }

\Rightarrow \frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3}

\Rightarrow \frac{k^{2}(k+1)^{2}+4(k+1)^{3}}{4}

\Rightarrow \frac{(k+1)^{2}\left[k^{2}+4(k+1)\right]}{4}

\Rightarrow \frac{(k+1)^{2}\left[k^{2}+4 k+4\right]}{4}

\Rightarrow \frac{(k+1)^{2}(k+2)^{2}}{4}

\Rightarrow {\left[\frac{(k+1)(k+2)}{2}\right]^{2} }

{\left[\frac{(k+1)(k+1+1)}{2}\right]^{2} }

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 3: 1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\ldots+\frac{1}{(1+2+3+\ldots n)}=\frac{2 n}{(n+1)}.

Solution: Let P(n) be the given statement.

P(n): 1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\ldots+\frac{1}{(1+2+3+\ldots n)}=\frac{2 n}{(n+1)}

For n=1,

L.H.S.= 1

R.H.S.=\frac{2 \times 1}{(1+1)}=\frac{2}{2}=1 ,

which is true for n= 1

Assume that P(k) is true for some positive integer k

P(k):1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\ldots+\frac{1}{(1+2+3+\ldots k)}=\frac{2 k}{(k+1)}--(i)

We will now prove that P(k+1) is also true.

Now, we have

1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\ldots+\frac{1}{(1+2+3+\ldots k)}+\frac{1}{(1+2+3+\ldots(k+1))}=\frac{2(k+1)}{(k+2)}

Taking L.H.S.

\Rightarrow\left[1+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\ldots+\frac{1}{(1+2+3+\ldots k)}\right]+\frac{1}{(1+2+3+\ldots+k+(k+1))}

\Rightarrow \frac{2 k}{(k+1)}+\frac{1}{(1+2+3+\ldots+k+(k+1))} \quad \ldots[\text { from }(1)]

Since \left[ 1+2+3+\ldots+n=\frac{n(n+1)}{2}\right]

\Rightarrow \frac{2 k}{(k+1)}+\frac{2}{(k+1)(k+2)}

\Rightarrow \frac{2 k}{(k+1)}+\frac{2}{(k+1)(k+2)}

\Rightarrow \frac{2 k(k+2)+2}{(k+1)(k+2)}

\Rightarrow \frac{2\left(k^{2}+2 k+1\right)}{(k+1)(k+2)}

\Rightarrow \frac{2(k+1)^{2}}{(k+1)(k+2)}

\Rightarrow \frac{2(k+1)}{(k+2)}

\Rightarrow \frac{2(k+1)}{(k+1)+1}=R.H.S.

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 4: 1.2 .3+2.3 .4+\ldots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}

Solution: Let P(n) be the given statement.

P(n): 1.2 .3+2.3 .4+\ldots+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}

For n=1,

L.H.S.=1.2 .3=6

R.H.S.=\frac{1(1+1)(1+2)(1+3)}{4}=\frac{1.2 .3 .4}{4}=6

which is true.

Assume that P(k) is true for some positive integer k

1.2 .3+2.3 .4+\ldots+k(k+1)(k+2)=\frac{k(k+1)(k+2)(k+3)}{4}--(i)

We will now prove that P(k+1) is also true.

Now, we have

P(k+1):1.2 .3+2.3 .4+\ldots+k(k+1)(k+2)+(k+1)[(k+2](k+3)=\frac{(k+1)(k+2)(k+3)(k+4)}{4}

Taking L.H.S.

1.2 .3+2.3 .4+\ldots+k(k+1)(k+2)+(k+1)(k+2)(k+3)

\Rightarrow \frac{k(k+1)(k+2)(k+3)}{4}+(k+1)(k+2)(k+3) \quad \ldots[\text { from }(1)]

\Rightarrow \frac{k(k+1)(k+2)(k+3)+4(k+1)(k+2)(k+3)}{4}

\Rightarrow \frac{(k+1)(k+2)(k+3)(k+4)}{4}

\Rightarrow \frac{(k+1)[(k+1)+1][(k+1)+2][(k+1)+3]}{4}

=R.H.S.

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 5: 1.3+2.3^{2}+3.3^{3}+\ldots+n .3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}.

Solution: Let P(n) be the given statement.

P(n): 1.3+2.3^{2}+3.3^{3}+\ldots+n \cdot 3^{n}=\frac{(2 n-1) 3^{n+1}+3}{4}

For n=1,

L.H.S.=1.3=3

R.H.S.=\frac{(2 \times 1-1) 3^{1+1}+3}{4}=\frac{1.3^{2}+3}{4}=\frac{12}{4}=3

which is true

Assume that P(k) is true for some positive integer k

1.3+2.3^{2}+3.3^{3}+\ldots+k \cdot 3^{k}=\frac{(2 k-1) 3^{k+1}+3}{4}--(i)

We will now prove that P(k+1) is also true.

Now, we have

1.3+2 \cdot 3^{2}+3 \cdot 3^{3}+\ldots+k \cdot 3^{k}+(k+1) \cdot 3^{k+1}=\frac{(2k+1) \cdot 3^{(k+2)}+3}{4}

Taking L.H.S.

1.3+2 \cdot 3^{2}+3 \cdot 3^{3}+\ldots+(k+1) \cdot 3^{k+1}

\Rightarrow {\left[1.3+2 \cdot 3^{2}+3 \cdot 3^{3}+\ldots+k \cdot 3^{k}\right]+(k+1) \cdot 3^{k+1} }

\Rightarrow \frac{(2 k-1) 3^{k+1}+3}{4}+(k+1) \cdot 3^{k+1} \quad \ldots[\text { from }(1)]

\Rightarrow \frac{(2 k-1) 3^{k+1}+3+4(k+1) \cdot 3^{k+1}}{4}

\Rightarrow \frac{3^{k+1}[(2 k-1)+4(k+1)]+3}{4}

\Rightarrow \frac{3^{k+1}[2 k-1+4 k+4]+3}{4}

\Rightarrow \frac{3^{k+1}[6 k+3]+3}{4}

\Rightarrow \frac{(2k+1) \cdot 3^{(k+1)+1}+3}{4}

=R.H.S.

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 6: 1.2+2.3+3.4+\ldots+n \cdot(n+1)=\left[\frac{n(n+1)(n+2)}{3}\right].

Solution: Let P(n) be the given statement. i.e.,

P(n): 1.2+2.3+3.4+\ldots+n \cdot(n+1)=\left[\frac{n(n+1)(n+2)}{3}\right]

For n=1,

L.H.S. 1.2=2

R.H.S.=\left[\frac{1(1+1)(1+2)}{3}\right]=\frac{1.2 .3}{3}=2

L.H.S.=R.H.S.

which is true for n=1

Assume that P(k) is true for some positive integer k

P(k): 1.2+2.3+3.4+\ldots+k .(k+1)=\left[\frac{k(k+1)(k+2)}{3}\right]--(i)

We will now prove that P(k+1) is also true.

Now, we have
P(k+1):1.2+2.3+3.4+\ldots+(k+1)(k+2)=\frac{(k+1)(k+2)(k+3)}{3}
Taking L.H.S.

1.2+2.3+3.4+\ldots+(k+1)(k+2)

\Rightarrow {[1.2+2.3+3.4+\ldots+k \cdot(k+1)]+(k+1)(k+2) }

\Rightarrow {\left[\frac{k(k+1)(k+2)}{3}\right]+(k+1)(k+2) \quad \ldots[\text { from }(1)] }

\Rightarrow \frac{k(k+1)(k+2)+3(k+1)(k+2)}{3}

\Rightarrow \frac{(k+1)(k+2)(k+3)}{3}

\Rightarrow \frac{(k+1)[(k+1)+1][(k+1)+2]}{3}

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 7: 1.3+3.5+5.7+\ldots+(2 n-1)(2 n+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}.

Solution: Let P(n) be the given statement. For n=1,

P(n): 1.3+3.5+5.7+\ldots+(2 n-1)(2 n+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}

L.H.S.= 1.3=3

=\frac{1\left(4.1^{2}+6.1-1\right)}{3}=\frac{9}{3}=3

Hence, L.H.S.=R.H.S. for n=1

Assume that P(k) is true for some positive integer k

P(k):1.3+3.5+5.7+\ldots+(2 k-1)(2 k+1)=\frac{k\left(4 k^{2}+6 k-1\right)}{3}

We will now prove that P(k+1) is also true.

Now, we have

P(k+1):1.3+3.5+5.7+\ldots+[2(k+1)-1]+[2(k+1)+1]=\frac{(k+1)[4(k+1)^2+6(k+1)-1]}{3}

Taking L.H.S.

1.3+3.5+5.7+\ldots+[2(k+1)-1]+[2(k+1)+1]

\Rightarrow {1.3+3.5+5.7+\ldots+(2 k-1)(2 k+1)+(2 k+1)(2 k+3) }

\Rightarrow {\left[\frac{k\left(4 k^{2}+6 k-1\right)}{3}\right]+\left(4 k^{2}+8 k+3\right) \quad \ldots[\text { from }(1)] }

\Rightarrow \frac{k\left(4 k^{2}+6 k-1\right)+3\left(4 k^{2}+8 k+3\right)}{3}

\Rightarrow \frac{4 k^{3}+6 k^{2}-k+12 k^{2}+24 k+9}{3}

\Rightarrow \frac{4 k^{3}+18 k^{2}+23 k+9}{3}

\Rightarrow \frac{4 k^{3}+14 k^{2}+9 k+4 k^{2}+14 k+9}{3}

\Rightarrow \frac{\left(k k^{2}+14 k+9\right)+\left(4 k^{2}+14 k+9\right)}{3}

\Rightarrow \frac{(k+1)\left(4 k^{2}+14 k+9\right)}{3}

\Rightarrow \frac{(k+1)\left(4 k^{2}+8 k+4+6 k+6-1\right)}{3}

\Rightarrow \frac{(k+1)\left[4\left(k^{2}+2 k+2\right)+6(k+1)-1\right]}{3}

\Rightarrow \frac{(k+1)[4(k+1)^2+6(k+1)-1]}{3}

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 8: 1.2+2.2^{2}+3.2^{3}+\ldots+n \cdot 2^{n}=(n-1) 2^{n+1}+2.

Solution: Let P(n) be the given statement.

P(n): 1.2+2.2^{2}+3.2^{3}+\ldots+n \cdot 2^{n}=(n-1) 2^{n+1}+2

For n=1,

L.H.S.= 1.2=2

=(1-1) 2^{1+1}+2=0+2=2

L.H.S.=R.H.S. for n=1

Assume that P(k) is true for some positive integer k

P(k):1.2+2.2^{2}+3.2^{3}+\ldots+k .2^{n}=(k-1) 2^{k+1}+2

We will now prove that P(k+1) is also true.

Now, we have

P(k+1):1 \cdot 2+2 \cdot 2^{2}+3 \cdot 2^{3}+\ldots+(k+1) \cdot 2^{k+1}= {[(k+1)-1] \cdot 2^{(k+1)+1}+2 }

Taking L.H.S.

1 \cdot 2+2 \cdot 2^{2}+3 \cdot 2^{3}+\ldots+(k+1) \cdot 2^{k+1}

\Rightarrow {\left[1 \cdot 2+2 \cdot 2^{2}+3 \cdot 2^{3}+\ldots+k \cdot 2^{n}\right]+(k+1) \cdot 2^{k+1} }

\Rightarrow (k-1) 2^{k+1}+2+(k+1) \cdot 2^{k+1} \quad \ldots[\text { from }(1)]

\Rightarrow {[(k-1)+(k+1)] 2^{k+1}+2 }

\Rightarrow 2 k \cdot 2^{(k+1)}+2

\Rightarrow k \cdot 2^{(k+1)+1}+2

\Rightarrow {[(k+1)-1] \cdot 2^{(k+1)+1}+2 }

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N

Question 9: \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}.

Solution: Let P(n) be the given statement.

P(n): \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}

For n=1,

L.H.S.=\frac{1}{2}

=1-\frac{1}{2^{1}}=1-\frac{1}{2}=\frac{1}{2}

Hence, L.H.S. = R.H.S. for n= 1

Assume that P(k) is true for some positive integer k

P(k):\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{k}}=1-\frac{1}{2^{k}}--(i)

We will now prove that P(k+1) is also true.

Now, we have

P(k+1):\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{k+1}}=1-\frac{1}{2^{k+1}}

Taking L.H.S.

\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{k+1}}

\Rightarrow {\left[\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{k}}\right]+\frac{1}{2^{k+1}} }

\Rightarrow 1-\frac{1}{2^{k}}+\frac{1}{2^{k+1}} \quad \ldots[\text { from (1) }]

\Rightarrow 1-\frac{1}{2^{k}}\left(1-\frac{1}{2}\right)

\Rightarrow 1-\frac{1}{2^{k}} \cdot \frac{1}{2}

\Rightarrow 1-\frac{1}{2^{k+1}}

=R.H.S.

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 10:\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{(6 n+4)}

Solution: Let P(n) be the given statement.

P(n): \frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{(6 n+4)}

For n=1,

L.H.S.=\frac{1}{2.5}=\frac{1}{10}

R.H.S.=\frac{1}{(6.1+4)}=\frac{1}{10}

L.H.S.=R.H.S. for n=1

Assume that P(k) is true for some positive integer k

P(k):\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots+\frac{1}{(3 k-1)(3 k+2)}=\frac{k}{(6 k+4)}--(i)

We will now prove that P(k+1) is also true.

Now, we have

\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots+\frac{1}{[3(k+1)-1][3(k+1)+2]}=\frac{(k+1)}{[6(k+1)+4]}

Taking L.H.S.

\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots+\frac{1}{[3(k+1)-1][3(k+1)+2]}

\Rightarrow\left[\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots+\frac{1}{(3 k-1)(3 k+2)}\right]+\frac{1}{(3 k+2)(3 k+5)}

\Rightarrow \frac{k}{(6 k+4)}+\frac{1}{(3 k+2)(3 k+5)} \quad \ldots[\text { from }(1)]

\Rightarrow \frac{k}{2(3 k+2)}+\frac{1}{(3 k+2)(3 k+5)}

\Rightarrow \frac{1}{(3 k+2)}\left[\frac{k}{2}+\frac{1}{(3 k+5)}\right]

\Rightarrow \frac{1}{(3 k+2)}\left[\frac{k(3 k+5)+2}{2(3 k+5)}\right]

\Rightarrow \frac{1}{(3 k+2)}\left[\frac{3 k^{2}+5 k+2}{2(3 k+5)}\right]

\Rightarrow \frac{1}{(3 k+2)}\left[\frac{3 k^{2}+3 k+2 k+2}{2(3 k+5)}\right]

\Rightarrow \frac{1}{(3 k+2)}\left[\frac{3 k(k+1)+2(k+1)}{2(3 k+5)}\right]

\Rightarrow \frac{1}{(3 k+2)}\left[\frac{(k+1)(3 k+2)}{2(3 k+5)}\right]

\Rightarrow \frac{(k+1)}{(6 k+10)}

\Rightarrow \frac{(k+1)}{[(6 k+6)+4]}

\Rightarrow \frac{(k+1)}{[6(k+1)+4]}

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 11: \frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}.

Solution: Let P(n) be the given statement.

P(n): \frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}

For n=1,

L.H.S.=\frac{1}{1.2 .3}=\frac{1}{6}

R.H.S.=\frac{1(1+3)}{4(1+1)(1+2)}=\frac{1.4}{4.2 .3}=\frac{1}{6}

Hence L.H.S.=R.H.S. for n=1

Assume that P(k) is true for some positive integer k

P(k):\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots+\frac{1}{k(k+1)(k+2)}=\frac{k(k+3)}{4(k+1)(k+2)}---(i)

We will now prove that P(k+1) is also true.

Now, we have

P(k+1):\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots+\frac{1}{(k+1)[(k+1)+1][(k+1)+2]}=\frac{(k+1)[(k+1)+3]}{4[(k+1)+1][(k+1)+2]}

Taking L.H.S.

\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots+\frac{1}{(k+1)[(k+1)+1][(k+1)+2]}

\Rightarrow\left[\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}+\ldots+\frac{1}{k(k+1)(k+2)}\right]+\frac{1}{(k+1)(k+2)(k+3)}

\Rightarrow \frac{k(k+3)}{4(k+1)(k+2)}+\frac{1}{(k+1)(k+2)(k+3)} \quad \ldots[\text { from }(1)]

\Rightarrow \frac{1}{(k+1)(k+2)}\left[\frac{k(k+3)}{4}+\frac{1}{(k+3)}\right]

\Rightarrow \frac{1}{(k+1)(k+2)}\left[\frac{k(k+3)^{2}+4}{4(k+3)}\right]

\Rightarrow \frac{1}{(k+1)(k+2)}\left[\frac{k\left(k^{2}+6 k+9\right)+4}{4(k+3)}\right]

\Rightarrow \frac{1}{(k+1)(k+2)}\left[\frac{k^{3}+6 k^{2}+9 k+4}{4(k+3)}\right]

\Rightarrow \frac{1}{(k+1)(k+2)}\left[\frac{k^{3}+2 k^{2}+k+4 k^{2}+8 k+4}{4(k+3)}\right]

\Rightarrow \frac{1}{(k+1)(k+2)}\left[\frac{k\left(k^{2}+2 k+1\right)+4\left(k^{2}+2 k+1\right)}{4(k+3)}\right]

\Rightarrow \frac{1}{(k+1)(k+2)}\left[\frac{(k+4)\left(k^{2}+2 k+1\right)}{4(k+3)}\right]

\Rightarrow \frac{1}{(k+1)(k+2)}\left[\frac{(k+4)(k+1)^{2}}{4(k+3)}\right]

\Rightarrow \frac{(k+1)(k+4)}{4(k+2)(k+3)}

\Rightarrow \frac{(k+1)[(k+1)+3]}{4[(k+1)+1][(k+1)+2]}

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 12: a+a r+a r^{2}+\ldots+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}.

Solution: Let P(n) be the given statement.

(n): a+a r+a r^{2}+\ldots+a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}

For n=1,

L.H.S.= a

R.H.S.=\frac{a\left(r^{1}-1\right)}{r-1}=\frac{a(r-1)}{r-1}=a
Hence, L.H.S.=R.H.S. for n=1

Assume that P(k) is true for some positive integer k

P(k): a+a r+a r^{2}+\ldots+a r^{k-1}=\frac{a\left(r^{k}-1\right)}{r-1}

We will now prove that P(k+1) is also true.

Now, we have

P(k+1):a+a r+a r^{2}+\ldots+a r^{(k+1)-1}=\frac{a\left(r^{k+1}-1\right)}{r-1}

Taking L.H.S.

a+a r+a r^{2}+\ldots+a r^{(k+1)-1}

\Rightarrow {\left[a+a r+a r^{2}+\ldots+a r^{k-1}\right]+a r^{k} }

\Rightarrow \frac{a\left(r^{k}-1\right)}{r-1}+a r^{k} \quad \ldots[\text { from (1) ] }

\Rightarrow \frac{a\left(r^{k}-1\right)+a r^{k}(r-1)}{r-1}

\Rightarrow \frac{a r^{k}-a+a r^{k+1}-a r^{k}}{r-1}

\Rightarrow \frac{a r^{k+1}-a}{r-1}

\Rightarrow \frac{a\left(r^{k+1}-1\right)}{r-1}

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 13 : \left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{(2 n+1)}{n^{2}}\right)=(n+1)^{2}.

Solution: Let P(n) be the given statement.

P(n):\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{(2 n+1)}{n^{2}}\right)=(n+1)^{2}

For n=1,

L.H.S.=\left(1+\frac{3}{1}\right)=4

R.H.S.=(1+1)^{2}=2^{2}=4

Assume that P(k) is true for some positive integer k

P(k):\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{(2 k+1)}{k^{2}}\right)=(k+1)^{2}

We will now prove that P(k+1) is also true.

Now, we have

P(k+1):\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{[2(k+1)+1]}{(k+1)^{2}}\right)=(k+1+1)^{2}

Taking L.H.S.

\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{[2(k+1)+1]}{(k+1)^{2}}\right)

\Rightarrow {\left[\left(1+\frac{3}{1}\right)\left(1+\frac{5}{4}\right)\left(1+\frac{7}{9}\right) \ldots\left(1+\frac{(2 k+1)}{k^{2}}\right)\right]\left(1+\frac{(2 k+3)}{(k+1)^{2}}\right) }

\Rightarrow (k+1)^{2}\left(1+\frac{(2 k+3)}{(k+1)^{2}}\right) \quad \ldots[\text { from }(1)]

\Rightarrow (k+1)^{2}\left(\frac{(k+1)^{2}+(2 k+3)}{(k+1)^{2}}\right)

\Rightarrow (k+1)^{2}+(2 k+3)

\Rightarrow k^{2}+2 k+1+2 k+3

\Rightarrow k^{2}+4 k+4

\Rightarrow (k+2)^{2}

\Rightarrow (k+1+1)^{2}

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 14 :\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{n}\right)=(n+1).

Solution: Let P(n) be the given statement.

P(n):\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{n}\right)=(n+1)

For n=1,

L.H.S.=\left(1+\frac{1}{1}\right)=2

=(1+1)=2

Hence, L.H.S. = R.H.S. for n = 1

Assume that P(k) is true for some positive integer k

P(k):\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{k}\right)=(k+1)

We will now prove that P(k+1) is also true.

Now, we have

P(k+1):\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \cdots\left(1+\frac{1}{k+1}\right)={[(k+1)+1] }

Taking L.H.S.

\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \cdots\left(1+\frac{1}{k+1}\right)

\Rightarrow {\left[\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) \ldots\left(1+\frac{1}{k}\right)\right]\left(1+\frac{1}{k+1}\right) }

\Rightarrow (k+1)\left(1+\frac{1}{k+1}\right)

\Rightarrow (k+1)\left(\frac{k+1+1}{k+1}\right)

\Rightarrow {[(k+1)+1] }

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 15: 1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}.

Solution: Let P(n) be the given statement.

P(n): 1^{2}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}

For n=1,

L.H.S.=1^{2}=1

=\frac{1(2.1-1)(2.1+1)}{3}=\frac{1.1 .3}{3}=1

Hence, L.H.S. = R.H.S. for n=1

Assume that P(k) is true for some positive integer k

P(k):1^{2}+3^{2}+5^{2}+\ldots+(2 k-1)^{2}=\frac{k(2 k-1)(2 k+1)}{3}--(i)

We will now prove that P(k+1) is also true. Now, we have

P(k+1):1^{2}+3^{2}+5^{2}+\ldots+[2(k+1)-1]^{2}=\frac{(k+1)[2(k+1)-1][2(k+1)+1]}{3}

Taking L.H.S.

1^{2}+3^{2}+5^{2}+\ldots+[2(k+1)-1]^{2}

\Rightarrow\left[1^{2}+3^{2}+5^{2}+\ldots+(2 k-1)^{2}\right]+(2 k+1)^{2}

\Rightarrow \frac{k(2 k-1)(2 k+1)}{3}+(2 k+1)^{2} \quad \ldots[\text { from (1) }

\Rightarrow \frac{k(2 k-1)(2 k+1)+3(2 k+1)^{2}}{3}

\Rightarrow \frac{(2 k+1)[k(2 k-1)+3(2 k+1)]}{3}

\Rightarrow \frac{(2 k+1)\left[2 k^{2}-k+6 k+3\right]}{3}

\Rightarrow \frac{(2 k+1)\left[2 k^{2}+5 k+3\right]}{3}

\Rightarrow \frac{(2 k+1)\left[2 k^{2}+2 k+3 k+3\right]}{3}

\Rightarrow \frac{(2 k+1)[2 k(k+1)+3(k+1)]}{3}

\Rightarrow \frac{(2 k+1)(k+1)(2 k+3)}{3}

\Rightarrow \frac{(k+1)[2(k+1)-1][2(k+1)+1]}{3}

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 16: \frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{(3 n+1)}.

Solution: Let P(n) be the given statement.

P(n):\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{(3 n+1)}

For n=1,

L.H.S.=\frac{1}{1.4}=\frac{1}{4}

=\frac{1}{(3.1+1)}=\frac{1}{4}

Hence, L.H.S.=R.H.S., for n = 1

Assume that P(k) is true for some positive integer k

P(k):\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{(3 k-2)(3 k+1)}=\frac{k}{(3 k+1)}

We will now prove that P(k+1) is also true.

Now, we have

P(K+1):\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{[3(k+1)-2][3(k+1)+1]}\frac{(k+1)}{[3(k+1)+1]}

Taking L.H.S.

\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{[3(k+1)-2][3(k+1)+1]}

\Rightarrow {\left[\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots+\frac{1}{(3 k-2)(3 k+1)}\right]+\frac{1}{(3 k+1)(3 k+4)} }

\Rightarrow \frac{k}{(3 k+1)}+\frac{1}{(3 k+1)(3 k+4)} \quad \ldots[\text { from }(1)]

\Rightarrow \frac{k(3 k+4)+1}{(3 k+1)(3 k+4)}

\Rightarrow \frac{3 k^{2}+4 k+1}{(3 k+1)(3 k+4)}

\Rightarrow \frac{3 k^{2}+3 k+k+1}{(3 k+1)(3 k+4)}

\Rightarrow \frac{3 k(k+1)+(k+1)}{(3 k+1)(3 k+4)}

\Rightarrow \frac{(3 k+1)(k+1)}{(3 k+1)(3 k+4)}

\Rightarrow \frac{(k+1)}{[3(k+1)+1]}

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 17: \frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}.

Solution: Let P(n) be the given statement.

P(n): \frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}

For n=1,

L.H.S.=\frac{1}{3.5}=\frac{1}{15}

=\frac{1}{3(2.1+3)}=\frac{1}{3.5}=\frac{1}{15}

Hence, L.H.S. = R.H.S. for n=1

Assume that P(k) is true for some positive integer k

P(k):\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 k+1)(2 k+3)}=\frac{k}{3(2 k+3)}

We will now prove that P(k+1) is also true.

Now, we have

P(k+1):\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{[2(k+1)+1][2(k+1)+3]}=\frac{(k+1)}{3[2(k+1)+3]}

Taking L.H.S.

\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{[2(k+1)+1][2(k+1)+3]}

\Rightarrow {\left[\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\ldots+\frac{1}{(2 k+1)(2 k+3)}\right]+\frac{1}{(2 k+3)(2 k+5)} }

\Rightarrow \frac{k}{3(2 k+3)}+\frac{1}{(2 k+3)(2 k+5)}

\Rightarrow \frac{k(2 k+5)+3}{3(2 k+3)(2 k+5)}

\Rightarrow \frac{2 k^{2}+5 k+3}{3(2 k+3)(2 k+5)}

\Rightarrow \frac{2 k^{2}+2 k+3 k+3}{3(2 k+3)(2 k+5)}

\Rightarrow \frac{2 k(k+1)+3(k+1)}{3(2 k+3)(2 k+5)}

\Rightarrow \frac{(2 k+3)(k+1)}{3(2 k+3)(2 k+5)}

\Rightarrow \frac{(k+1)}{3(2 k+5)}

\Rightarrow \frac{(k+1)}{3[2(k+1)+3]}

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 18 : 1+2+3+\ldots+n<\frac{1}{8}(2 n+1)^{2}.

Solution: Let P(n) be the given statement.

P(n): 1+2+3+\ldots+n<\frac{1}{8}(2 n+1)^{2}

For n=1,

Since,

P(1): 1<\frac{1}{8}(2.1+1)^{2}

\Rightarrow 1<\frac{9}{8}=1 \frac{1}{8}

Hence, P(1) is true

Assume that P(k) is true for some positive integer k

P(1):1+2+3+\ldots+k<\frac{1}{8}(2 k+1)^{2}--(i)

We will now prove that P(k+1) is true whenever P(k) is true Now, we have

1+2+3+\ldots+k <\frac{1}{8}(2 k+1)^{2} \quad[\text { from (1)] }

Adding both side by (k+1)

1+2+3+\ldots+k+(k+1) <\frac{1}{8}(2 k+1)^{2}+(k+1)

\Rightarrow 1+2+3+\ldots+k+(k+1)<\frac{1}{8}\left[(2 k+1)^{2}+8(k+1)\right]

\Rightarrow 1+2+3+\ldots+k+(k+1)<\frac{1}{8}\left[4 k^{2}+4 k+1+8 k+8\right]

\Rightarrow 1+2+3+\ldots+k+(k+1)<\frac{1}{8}\left[4 k^{2}+12 k+9\right]

\Rightarrow 1+2+3+\ldots+k+(k+1)<\frac{1}{8}[2 k+3]^{2}

\Rightarrow 1+2+3+\ldots+k+(k+1)<\frac{1}{8}[2(k+1)+1]^{2}

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 19: n(n+1)(n+5) is a multiple of 3.

Solution: Let the statement be P(n)

P(n): n(n+1)(n+5) \text { is a multiple of } 3 .

For n= 1

P(1): 1(1+1)(1+5)=1.2 .6=12 \text { which is a multiple of } 3 .

Thus P(n) is true for n=1

Let P(k) be true for some natural number k,

P(k): k(k+1)(k+5) \text { is a multiple of } 3 \text {. }

Hence

k(k+1)(k+5)=3 a where a \in N.

\Rightarrow k(k^2+6k+5)=3a

\Rightarrow k^3+6k^2+5k = 3a

\Rightarrow k^3 = 3a-6k^2-5k--(i)

Now, we will prove that P(k+1) is true

P(k+1):(k+1)[(k+1)+1][(k+1)+5]

\Rightarrow (k+1)(k+2)(k+6)

\Rightarrow (k+1)(k^2+8k+12)

\Rightarrow k^3+8k^2+12k+k^2+8k+12

\Rightarrow (3a-6k^2-5k)+9k^2+20k+12\quad \text{ From (i) }

\Rightarrow 3a-6k^2-5k+9k^2+20k+12

\Rightarrow 3a+3k^2+15k+12

\Rightarrow 3(a+k^2+5k+4) \text { is a multiple of } 3 .

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 20:  10^{2 n-1}+1 is divisible by 11 .

Solution: Let the statement be P(n)

P(n): 10^{2 n-1}+1 \text { is divisible by } 11 \text {. }

For n = 1

P(1): 10^{2.1-1}+1=10+1=11 \text { which is divisible by } 11 \text {. }

Thus P(n) is true for n=1

Let P(k) be true for some natural number k,

P(k): 10^{2 k-1}+1 \text { is divisible by } 11 \text {. }

We can write

10^{2 k-1}+1=11 a \quad \text { where } a \in N .

\Rightarrow 10^{2k-1}=11a-1--(i)

Now, we will prove that P(k+1) is true

Now,

P(k+1):10^{2(k+1)-1}+1

\Rightarrow 10^{2 k+1}+1

\Rightarrow 10^{2}\left(10^{2 k-1}\right)+1

\Rightarrow 100(11a-1)+1\quad \text{ From (i) }

\Rightarrow 1100a-100+1

\Rightarrow 1100a-99

\Rightarrow 11(100a-9)\quad \text{ is divisible by 11 }

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 21: x^{2 n}-y^{2 n} is divisible by x+y.

Solution: Let the statement be P(n)

P(n): x^{2 n}-y^{2 n} \text { is divisible by } x+y .

For n=1

P(1): x^{2.1}-y^{2.1}

=x^{2}-y^{2}=(x+y)(x-y) \text { which is divisible by } x+y \text {. }

Thus P(n) is true for n=1

Let P(k) be true for some natural number k,

P(k): x^{2 k}-y^{2 k} \text { is divisible by } x+y \text {. }

We can write it as

x^{2 k}-y^{2 k}=a(x+y)\text { where } a \in N .

\Rightarrow x^{2k}=a(x+y)+y^{2k}--(i)

Now, we will prove that P(k+1) is true

Now,

P(k+1):x^{2(k+1)}-y^{2(k+1)}

\Rightarrow x^{2 k+2}-y^{2 k+2}

\Rightarrow x^{2}\left(x^{2 k}\right)-y^{2}\left(y^{2 k}\right)

\Rightarrow x^2[a(x+y)+y^{2k}]-y^{2}\left(y^{2 k}\right)

\Rightarrow ax^2(x+y)+x^2y^{2k}-y^2y^{2k}

\Rightarrow ax^2(x+y)+y^{2k}(x^2-y^2)

\Rightarrow ax^2(x+y)+y^{2k}(x-y)(x+y)

\Rightarrow (x+y)\left[a x^{2}+(x-y) y^{2 k}\right] \text { is divisible by } x+y .

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 22: 3^{2 n+2}-8 n-9 is divisible by 8 .

Solution: Let the statement be P(n)

P(n): 3^{2 n+2}-8 n-9 \text { is divisible by } 8 .

For n=1

P(1): 3^{2.1+2}-8.1-9

=3^{4}-8-9=81-17=64 \text { which is divisible by } 8 \text {. }

Thus P(n) is true for n=1

Let P(k) be true for some natural number k,

P(k): 3^{2 k+2}-8 k-9 \text { is divisible by } 8 \text {. }

3^{2 k+2}-8 k-9=8 a(Let)

\Rightarrow 3^{2k+2}=8a+8k+9--(i)

where a \in N.

Now, we will prove that P(k+1) is true .

Now,

P(k+1):3^{2(k+1)+2}-8(k+1)-9

\Rightarrow 3^{2 k+4}-8 k-8-9

\Rightarrow 3^{2} \cdot 3^{2 k+2}-8 k-17

\Rightarrow 9(8a+8k+9)-8k-17\quad \text{ From (i) }

\Rightarrow 72a+72k+81-8k-17

\Rightarrow 72a+64k+64

\Rightarrow 8(9a+8k+8) \text { is divisible by } 8 \text {. }

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 23: 41^{n}-14^{n} is a multiple of 27.

Solution: Let the statement be P(n)

P(n): 41^{n}-14^{n} \text { is a multiple of } 27 .

P(1): 41^{1}-14^{1}

=41-14=27 \text { which is a multiple of } 27 .

Thus P(n) is true for n=1

Let P(k) be true for some natural number k,

P(k): 41^{k}-14^{k} \text { is a multiple of } 27 \text {. }

We can write

41^{k}-14^{k}=27 a\text { where } a \in N .

\Rightarrow 41^k = 27a +14^k

Now, we will prove that P(k+1) is true

Now,

41^{k+1}-14^{k+1}

\Rightarrow 41.41^{k}-14.14^{k}

\Rightarrow 41(27a+14^k)-14.14^k

\Rightarrow 41\times 27a+41.14^k-14.14^k

\Rightarrow 41\times 27a+14^k(41-14)

\Rightarrow 41\times 27a+14^k\times 27

\Rightarrow 27(41a+14^k)\text { is a multiple of } 27

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Question 24 : (2 n+7)<(n+3)^{2}

Solution:Let P(n) be the given statement.

P(n):(2 n+7)<(n+3)^{2}

We note that P(n) is true for n=1,

P(1):(2.1+7)=9<(1+3)^{2}=16

Assume that P(k) is true for some positive integer k

P(k):2 k+7<(k+3)^{2}--(i)

We will now prove that P(k+1) is true,

Adding 2 both side in eq (i)

(2 k+7)+2 <(k+3)^{2}+2

\Rightarrow (2 k+7)+2<k^{2}+6 k+9+2

\Rightarrow (2 k+7)+2<k^{2}+6 k+11

Adding 2k+5 \text{ in R.H.S. }

\Rightarrow 2(k+1)+7<k^2+6k+11+2k+5

\Rightarrow 2(k+1)+7<k^2+8k+16

\Rightarrow 2(k+1)+7<(k+4)^2

Thus P(k+1) is true, whenever P(k) is true.

Hence, from the principle of mathematical induction, the statement P(n) is true for all natural numbers i.e., n \in N.

Ex 3.3 Trigonomety ncert maths solution class 11

gmath.in

Leave a Comment