Exercise 5.2 complex no. ncert math solution class 11

Exercise 5.2 (Complex number)

Find the modulus and the arguments of each of the complex numbers in Exercises 1 to 2.(Exercise 5.2 complex no. ncert math solution class 11)

Exercise 5.2 complex no. ncert math solution class 11

Question 1: Z=-1-i \sqrt{3}

Solution : Let Z=-1-i \sqrt{3}=r(\cos \theta+i \sin \theta)

Comparing the real and imaginary parts, we have

r \cos \theta=-1--(i)

r \sin \theta=-\sqrt{3}--(ii)

Squaring and adding equation (1) and (2), we have

r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=1+3

\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=4

\Rightarrow r^{2}=4 \quad \Rightarrow r=2 \quad[\because r=|Z|>0]

Therefore, modulus =2

Now, dividing equation (2) by (1), we have

\frac{r \sin \theta}{r \cos \theta}=\frac{-\sqrt{3}}{-1}

\Rightarrow \tan \theta=\sqrt{3}

From the equations (1), (2) and (3), it is clear that \sin \theta and \cos \theta are negative but \tan \theta is positive. So, \theta lies in III quadrant. Therefore,

Argument \theta=-\left(\pi-\frac{\pi}{3}\right)=-\frac{2 \pi}{3}

Question 2: Z=-\sqrt{3}+i

Solution : Let Z=-\sqrt{3}+i=r(\cos \theta+i \sin \theta)

Comparing the real and imaginary parts, we have

r \cos \theta=-\sqrt{3}--(i)

r \sin \theta=1--(ii)

Squaring and adding equation (1) and (2), we have

r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=3+1

\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=4

\Rightarrow r^{2}=4

\Rightarrow r=2 \quad[\because r=|Z|>0]

Therefore, modulus =2

Now, dividing equation (2) by (1), we have

\frac{r \sin \theta}{r \cos \theta}=\frac{1}{-\sqrt{3}}

\Rightarrow \tan \theta=-\frac{1}{\sqrt{3}}--(iii)

From the equations (1), (2) and (3), it is clear that \cos \theta and \tan \theta are negative but \sin \theta is positive. So, \theta lies in II quadrant. Therefore,

\text { Argument } \theta=\left(\pi-\frac{\pi}{6}\right)=\frac{5 \pi}{6}

Convert each of the complex numbers given in Exercises 3 to 8 in the polar form:

Question 3: 1-i

Solution : Let Z=1-i=r(\cos \theta+i \sin \theta)

Comparing the real and imaginary parts, we have

r \cos \theta=1--(i)

r \sin \theta=-1--(ii)

Squaring and adding equation (1) and (2), we have

r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=1+1

\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=2

\Rightarrow r^{2}=2

\Rightarrow r=\sqrt{2} \quad[\because r=|Z|>0]

Therefore, modulus =\sqrt{2}

Now, dividing equation (2) by (1), we have

\frac{r \sin \theta}{r \cos \theta}=\frac{-1}{1}

\Rightarrow \tan \theta=-1--(iii)

From the equations (1), (2) and (3), it is clear that \sin \theta and \tan \theta are negative but \cos \theta is positive. So, \theta lies in IV quadrant. Therefore,

\text { Argument } \theta=-\frac{\pi}{4}

Therefore, the polar form of Z=1-i is

\sqrt{2}\left[\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right]

Question 4: -1+i

Solution : Let Z=-1+i=r(\cos \theta+i \sin \theta)

Comparing the real and imaginary parts, we have

r \cos \theta=-1--(i)

r \sin \theta=1--(ii)

Squaring and adding equation (1) and (2), we have

r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=1+1

\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=2

\Rightarrow r^{2}=2 \quad \Rightarrow r=\sqrt{2} \quad[\because r=|Z|>0]

Therefore, modulus =\sqrt{2}

Now, dividing equation (2) by (1), we have

\frac{r \sin \theta}{r \cos \theta}=\frac{1}{-1}

\Rightarrow \tan \theta=-1--(iii)

From the equations (1), (2) and (3), it is clear that \cos \theta and \tan \theta are negative but \sin \theta is positive. So, \theta lies in II quadrant. Therefore,

\text { Argument } \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}

Therefore, the polar form of Z=-1+i is

\sqrt{2}\left[\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right]

Question 5: -1-i

Solution : Let Z=-1-i=r(\cos \theta+i \sin \theta)

Comparing the real and imaginary parts, we have

r \cos \theta=-1--(i)

r \sin \theta=-1--(ii)

Squaring and adding equation (1) and (2), we have

r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=1+1

\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=2

\Rightarrow r^{2}=2

\Rightarrow r=\sqrt{2} \quad[\because r=|Z|>0]

Therefore, modulus =\sqrt{2}

Now, dividing equation (2) by (1), we have

\frac{r \sin \theta}{r \cos \theta}=\frac{1}{1}

\Rightarrow \tan \theta=1

From the equations (1), (2) and (3), it is clear that \sin \theta and \cos \theta are negative but tan \theta is positive. So, \theta lies in III quadrant. Therefore,

\text { Argument } \theta=-\left(\pi-\frac{\pi}{4}\right)=-\frac{3 \pi}{4}

Therefore, the polar form of Z=-1-i is given by

\sqrt{2}\left[\cos \left(-\frac{3 \pi}{4}\right)+i \sin \left(-\frac{3 \pi}{4}\right)\right]

Question 6: -3

Solution : Let Z=-3+0 i=r(\cos \theta+i \sin \theta)

Comparing the real and imaginary parts, we have

r \cos \theta=-3--(i)

r \sin \theta=0--(ii)

Squaring and adding equation (1) and (2), we have

r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=9+0

\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=9

\Rightarrow r^{2}=9

\Rightarrow r=3 \quad[\because r=|Z|>0]

Therefore, modulus =3

Now, dividing equation (2) by (1), we have

\frac{r \sin \theta}{r \cos \theta}=\frac{0}{-3}

\Rightarrow \tan \theta=0--(iii)

From the equations (1), (2) and (3), it is clear that \sin \theta and \tan \theta are 0 but \cos \theta is negative. Therefore,

\text { Argument } \theta=\pi

Therefore, the polar form of Z=-3 is

3[\cos \pi+i \sin \pi]

Question 7: \sqrt{3}+i

Solution : Let Z=\sqrt{3}+i=r(\cos \theta+i \sin \theta)

Comparing the real and imaginary parts, we have

r \cos \theta=\sqrt{3}--(i)

r \sin \theta=1--(ii)

Squaring and adding equation (1) and (2), we have

r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=3+1

\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=4

\Rightarrow r^{2}=4

\Rightarrow r=2 \quad[\because r=|Z|>0]

Therefore, modulus =2

Now, dividing equation (2) by (1), we have

\frac{r \sin \theta}{r \cos \theta}=\frac{1}{\sqrt{3}}

\Rightarrow \tan \theta=\frac{1}{\sqrt{3}}---(iii)

From the equations (1), (2) and (3), it is clear that \sin \theta, \cos \theta and \tan \theta all are positive. So, \theta lies in I quadrant. Therefore,

\text { Argument } \theta=\frac{\pi}{6}

Therefore, the polar form of Z=\sqrt{3}+i is

2\left[\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right]

Question 8: i

Solution : Let Z=0+i=r(\cos \theta+i \sin \theta)

Comparing the real and imaginary parts, we have

r \cos \theta=0--(i)

r \sin \theta=1--(ii)

Squaring and adding equation (1) and (2), we have

r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=0+1

\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1

\Rightarrow r^{2}=1

\Rightarrow r=1 \quad[\because r=|Z|>0]

Therefore, modulus =1

Now, dividing equation (1) by (2), we have

\frac{r \cos \theta}{r \sin \theta}=\frac{0}{1}

\Rightarrow \cot \theta=0

\Rightarrow \tan \theta =\infty--(iii)

From the equations (1), (2) and (3), it is clear that \cos \theta and \cot \theta are 0 but \sin \theta is positive. Therefore,

\text { Argument } \theta=\frac{\pi}{2}

Therefore, the polar form of Z=i is given by

1\left[\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right]

 

Exercise 5.1 complex no. ncert math solution class 11

gmath.in

Leave a Comment