Exercise 8.1 ncert math solution class 12

Exercise 8.1(Application of Integrals)

Chapter 8 Exercise 8.1 ncert math solution class 12

Question1: Find the area of the region bounded by the curve y^{2}=x and the lines x=1, x=4 and the x-axis.

Solution : The area of the region bounded by the curve, y^{2}=x, the lines, x=1 and x=4, and the X-axis is the area E B C F.

Exercise 8.1 ncert math solution class 12

Area of \mathrm{E B C F}=\int_{1}^{4} y d x

=\int_{1}^{4} \sqrt{x} d x

=\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{4}

=\frac{2}{3}\left[(4)^{\frac{3}{2}}-(1)^{\frac{3}{2}}\right]

=\frac{2}{3}[8-1]=\frac{14}{3} units

Question 2: Find the area of the region bounded by y^{2}=9 x, x=2, x=4 and the x-axis in the first quadrant.

Solution : The area of the region bounded by the curve, y^{2}=9 x, x=2, and x=4, and the x-axis, is the area E B C F.

Exercise 8.1 ncert math solution class 12

Area of \mathrm{E B C F}=\int_{2}^{4} y d x

=\int_{2}^{4} 3 \sqrt{x} d x

=3\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{2}^{4}=\left[x^{\frac{3}{2}}\right]_{2}^{4}

=2\left[(4)^{\frac{3}{2}}-(2)^{\frac{3}{2}}\right]

=2[8-2 \sqrt{2}]

=16-4 \sqrt{2} units

Question 3: Find the area of the region bounded by x^{2}=4 y, y=2, y=4 and the y-axis in the first quadrant.

Solution : The area of the region bounded by the curve, x^{2}=4 y, y=2, and y=4, and the y-axis is the area E B C F.

Exercise 8.1 ncert math solution class 12

Area of \mathrm{E B C F}=\int_{2}^{4} x d y

=\int_{2}^{4} 2 \sqrt{y} d x

=2 \int_{2}^{4} \sqrt{y} d x=2\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{2}^{4}

=\frac{4}{3}\left[(4)^{\frac{3}{2}}-(2)^{\frac{3}{2}}\right]=\frac{4}{3}[8-2 \sqrt{2}]

=\left(\frac{32-8 \sqrt{2}}{3}\right) units

Question 4: Find the area of the region bounded by the ellipse \frac{x^{2}}{16}+\frac{y^{2}}{9}=1

Solution : The given equation of the ellipse \frac{x^{2}}{16}+\frac{y^{2}}{9}=1

Exercise 8.1 ncert math solution class 12

It can be observed that the ellipse is symmetrical about x-axis and y-axis.

Area bounded by ellipse =4 \times Area of OAB

Area of \mathrm{OAB}=\int_{0}^{4} y d x

=\int_{0}^{4} 3 \sqrt{1-\frac{x^{2}}{16} d x}=\frac{3}{4} \int_{0}^{4} \sqrt{16-x^{2}} d x

=\frac{3}{4}\left[\frac{x}{2} \sqrt{16-x^{2}}+\frac{16}{2} \sin ^{-1} \frac{x}{4}\right]_{0}^{4}

=\frac{3}{4}\left[2 \sqrt{16-16}+8 \sin ^{-1}(1)-0-8 \sin ^{-1}(0)\right]

=\frac{3}{4}\left[\frac{8 \pi}{2}\right]

\Rightarrow \frac{3}{4}\left[\frac{8 \pi}{2}\right]=3 \pi

Therefore, area bounded by the ellipse =4 \times Area of \mathrm{OAB}=4 \times 3 \pi=12 \pi units

Question 5: Find the area of the region bounded by the ellipse \frac{x^2}{4}+\frac{y^2}{9}=1

Solution : The given equation of the ellipse can be represented as \frac{x^2}{4}+\frac{y^2}{9}=1 It can be observed that the ellipse is symmetrical about x-axis and y-axis.

Exercise 8.1 ncert math solution class 12

Area bounded by ellipse =4 \times Area of OAB

\text { Area of } \mathrm{OAB}=\int_0^2 y d x=\int_0^2 3 \sqrt{1-\frac{x^2}{4}} d x

=\frac{3}{2} \int_0^2 \sqrt{4-x^2} d x

=\frac{3}{2}\left[\frac{x}{2} \sqrt{4-x^2}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_0^2

=\frac{3}{4}\left[\frac{2 \pi}{2}\right]=\frac{3 \pi}{2}

Therefore, area bounded by the ellipse =4 \times Area of O A B=4 \times \frac{3 \pi}{2}=6 \pi units

Question 6: Find the area of the region in the first quadrant enclosed by x-axis, line x=\sqrt{3} y and the \operatorname{circle} x^2+y^2=4

Solution : The area of the region bounded by the circle, x^2+y^2=4,line x=\sqrt{3}y and the x-axis is the area OAB.

Exercise 8.1 ncert math solution class 12

Solving x^2+y^2=4 and x=\sqrt{3}y

(\sqrt{3}y)^2+y^2=4

\Rightarrow 3y^2+y^2=4

\Rightarrow 4y^2 = 4

\Rightarrow y^2 = 1

\Rightarrow y = 1

and x= \sqrt{3}

The point of intersection of the line and the circle in the first quadrant is (\sqrt{3}, 1).

Area O A C= Area \triangle O C B+ Area A C B

Area of \mathrm{OAB}= \int_0^{\sqrt{3}}y_1dx

=\int_0^{\sqrt{3}}\frac{x}{\sqrt{3}}dx

=\frac{1}{\sqrt{3}}\int_0^{\sqrt{3}} xdx

= \frac{1}{\sqrt{3}}\left[\frac{x^2}{2}\right]_0^{\sqrt{3}}

=\frac{1}{2\sqrt{3}}\left[(\sqrt{3})^2-0\right]

=\frac{1}{2\sqrt{3}}\times 3

=\frac{\sqrt{3}}{2}….(i)

\text { Area of } \mathrm{ABC}=\int_{\sqrt{3}}^2 y d x=\int_{\sqrt{3}}^2 \sqrt{4-x^2} d x

=\left[\frac{x}{2} \sqrt{4-x^2}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{\sqrt{3}}^2

=\left[2 \times \frac{\pi}{2}-\frac{\sqrt{3}}{2} \sqrt{4-3}+2 \sin ^{-1} \frac{\sqrt{3}}{2}\right]

=\pi-\frac{\sqrt{3} \pi}{2}-2\left(\frac{\pi}{3}\right)=\pi-\frac{\sqrt{3} \pi}{2}-\frac{2 \pi}{3}=\left[\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right]…..(ii)

Adding the equation (1) and (2), we get

The total area of \mathrm{OAC}=\frac{\sqrt{3}}{2}+\frac{\pi}{3}-\frac{\sqrt{3}}{2}=\frac{\pi}{3} units

Therefore, area enclosed by x – axis, the line x=\sqrt{3} and the circle x^2+y^2=4 in the first quadrant is \frac{\pi}{3} square units.

Question 7: Find the area of the smaller part of the circle \mathrm{x}^2+\mathrm{y}^2=\mathrm{a}^2 cut off by the line x=\frac{a}{\sqrt{2}}.

Solution : It can be observed that the area A B C D is symmetrical about x-axis.

Exercise 8.1 ncert math solution class 12

Given, x^2+y^2=a^21

\Rightarrow y = \sqrt{a^2-x^2}

Area of ABC = \int_{\frac{a}{\sqrt{2}}}^a y dx

= \int_{\frac{a}{\sqrt{2}}}^a \sqrt{a^2-x^2}dx

= \left[\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1}\frac{x}{a}\right]_{\frac{a}{\sqrt{2}}}^a

=\left[\left(\frac{a}{2}\sqrt{a^2-a^2}+\frac{a^2}{2}\sin^{-1}\frac{a}{a}\right)-\left(\frac{1}{2}\frac{a}{\sqrt{2}}\sqrt{a^2-\frac{a^2}{2}}+\frac{a^2}{2}\sin^{-1}\frac{a}{\sqrt{2}a}\right) \right]

=\left[\frac{a^2}{2}\times \frac{\pi}{2}-\left(\frac{a^2}{4}+\frac{a^2}{2}\times \frac{\pi}{4}\right)\right]

=\left[\frac{\pi a^2}{4}-\frac{a^2}{4}-\frac{\pi a^2}{8}\right]

\left[\frac{\pi a^2}{8}-\frac{a^2}{4}\right]

=\frac{a^2}{4}\left[\frac{\pi}{2}-1\right]

Therefore, the area of smaller part of the circle, \mathrm{x}^2+\mathrm{y}^2=\mathrm{a}^2, cut off by the line x=\frac{a}{\sqrt{2}} is \frac{a^2}{4}\left(\frac{\pi}{2}-1\right) square units.

Question 8: The area between x=y^2 and x=4 is divided into two equal parts by the line x=a, find the value of a.

Solution : The line, x=a, divides the area bounded by the parabola and x=4 into two equal parts.

Exercise 8.1 ncert math solution class 12

\therefore Area \mathrm{OBA}= Area \mathrm{ABCD}

It can be observed that the given area is symmetrical about x-axis.

\Rightarrow Area 2\times O B E= Area 2\times E B C F

Area O B E=\int_0^a y d x=\int_0^a \sqrt{x} d x

=\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_0^a

=\frac{2}{3}(a)^{\frac{3}{2}}…..(i)

Area of E B C F=\int_0^4 \sqrt{x} d x

=\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_0^4

=\frac{2}{3}\left[8-(a)^{\frac{3}{2}}\right]…..(ii)

From (1) and (2), we have

\frac{2}{3}(a)^{\frac{3}{2}}=\frac{2}{3}\left[8-(a)^{\frac{3}{2}}\right]

\Rightarrow 2(a)^{\frac{3}{2}}=8

\Rightarrow(a)^{\frac{3}{2}}=4

\Rightarrow a=(4)^{\frac{2}{3}}

Therefore, the value of a is a=(4)^{\frac{2}{3}}.

Question 9: Find the area of the region bounded by the parabola y=x^{2} and y=|x|

Solution: The area bounded by the parabola, \mathrm{x}^{2}=\mathrm{y}, and the line, y=|x|, can be represented as The given area is symmetrical about y-axis.

Exercise 8.1 ncert math solution class 12

\therefore Area OACO = Area ODBO

Solving y=x^{2} and y=x

\Rightarrow x = x^2

\Rightarrow x = 1 \text{ and } x = 0

and y=1 and y = 0

The point of intersection of parabola, x^{2}=y, and line, y=x, is A(1,1) and (0, 0).

Area of O A C O= Area \triangle O A M - \text{ Area of OCAMO }

Area of \triangle O A M=\int_0^1 y_1 dx

=\int_0^1 x dx

= \left[\frac{x^2}{2}\right]_0^1

=\frac{1}{2}\left[1-0\right]

=\frac{1}{2}

Area of O B A C O=\int_{0}^{1} y_2 d x

=\int_{0}^{1} x^{2} d x

=\left[\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1}{3}

\Rightarrow Area of O A C O= Area of \triangle O A M - \text{ Area of OCAMO }

=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}

Therefore, required area =2\left[\frac{1}{6}\right]=\frac{1}{3} units

Question 10: Find the area bounded by the curve x^{2}=4 y and the line x=4 y-2.

Solution : The area bounded by the curve x^{2}=4 y and the line x=4 y-2 is represented by the shaded area OBAO.

Exercise 8.1 ncert math solution class 12

Solving x^{2}=4 y and x=4 y-2

x^2=x+2

\Rightarrow x^-x-2=0

\Rightarrow x^2-2x+x-2=0

\Rightarrow x(x-2)+1(x-2)=0

\Rightarrow (x-2)(x+1)=0

\Rightarrow x = 2 and x=-1

aand y=1 and y=\frac{1}{4}

Let A and B be the points of intersection of the line and parabola. Coordinates of point A are \left(-1, \frac{1}{4}\right) and point B are (2,1).

Exercise 8.1 ncert math solution class 12

We draw AL and BM perpendicular to x-axis.

It can be observed that,

Area OBAO =\int_{-1}^{2} \frac{x+2}{4} d x-\int_{-1}^{2} \frac{x^{2}}{4} d x

=\frac{1}{4}\left[\frac{x^{2}}{2}+2 x\right]_{-1}^{2}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{-1}^{2}

=\frac{1}{4}[(2+4)-(\frac{1}{2}-2)]-\frac{1}{4}\left[\frac{8}{3}-\frac{-1}{3}\right]

=\frac{1}{4}\left[\frac{15}{2}\right]-\frac{1}{4}\left[\frac{9}{3}\right]

=\frac{1}{4}\left[\frac{45-18}{6}\right]

=\frac{1}{4}\times \frac{27}{6}

= \frac{9}{8}

Question 11:Find the area of the region bounded by the curve y^{2}=4 x and the line x=3.

Solution : The region bounded by the parabola, y^{2}=4 x, and the line, x=3, is the area OABO.

Exercise 8.1 ncert math solution class 12

The area OABO is symmetrical about x-axis.

Area of \mathrm{OABO}=2 (Area of \mathrm{OAC})

Area O A B O=2\left[\int_{0}^{3} y d x\right]

=2\left[\int_{0}^{3} 2 \sqrt{x} d x\right]

=4\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{3}

=\frac{8}{3}\left[(3)^{\frac{3}{2}}\right]

=8 \sqrt{3}

Therefore, the required area is 8 \sqrt{3} units

Question 12: Area lying in the first quadrant and bounded by the circle x^{2}+y^{2}=4 and the lines x=0 and x=2 is

(A) \pi

(B) \frac{\pi}{2}

(C) \frac{\pi}{3}

(D) \frac{\pi}{4}

Solution : The correct answer is (A).

The area bounded by the circle and the lines, x=0 and x=2, in the first quadrant is represented as

Exercise 8.1 ncert math solution class 12

Area of O A B=\int_{0}^{2} y d x=\left[\int_{0}^{2} \sqrt{4-x^{2}} d x\right]

=\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2}

=2\left(\frac{\pi}{2}\right)

=\pi units

Thus, the correct answer is (A).

Question 13: Area of the region bounded by the curve y^{2}=4 x, y-axis and the line y=3 is

(A) 2

(B) \frac{9}{4}

(C) \frac{9}{3}

(D) \frac{9}{2}

Solution : The correct answer is (B)

The area bounded by the curve, y^{2}=4 x, y-axis and y=3 is represented as

Exercise 8.1 ncert math solution class 12

Area O A B=\int_{0}^{3} x d y=\int_{0}^{3} \frac{y^{2}}{4} d y

=\frac{1}{4}\left[\frac{y^{2}}{4}\right]_{0}^{3}=\frac{1}{12}(27)=\frac{9}{4} units

Thus, the correct answer is (B).

Chapter 8: Application of Integrals Class 12

Exercise 8.1 ncert math solution class 12

Exercise 8.2 ncert math solution class 12

gmath.in

Leave a Comment