Class 12 ncert solution math chapter 2 Miscellaneous

Chapter 2: Miscellaneous Exercise

Find the value of the following:(Class 12 ncert solution math chapter 2 Miscellaneous)

Question 1: Find the value of \cos ^{-1}\left(\cos \frac{13 \pi}{6}\right).

Solution: \cos ^{-1}\left(\cos \frac{13 \pi}{6}\right) =\cos ^{-1}\left[\cos \left(2 \pi+\frac{\pi}{6}\right)\right]

=\cos ^{-1}\left[\cos \frac{\pi}{6}\right]

=\frac{\pi}{6}

Question 2: Find the value of \tan ^{-1}\left(\tan \frac{7 \pi}{6}\right).

Solution: \left.\tan^{1}\left(\tan \frac{7 \pi}{6}\right) =\tan ^{-1}\left[\tan \left(2 \pi-\frac{5 \pi}{6}\right)\right]

=\tan ^{-1}\left[-\tan \left(\frac{5 \pi}{6}\right)\right]

=\tan ^{-1}\left[\tan \left(\pi-\frac{5 \pi}{6}\right)\right]

=\tan ^{-1}\left[\tan \frac{\pi}{6}\right]

=\frac{\pi}{6}

Question 3: Prove that 2 \sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{24}{7}.

Solution: Let \sin ^{-1} \frac{3}{5}=x \Rightarrow \sin x=\frac{3}{5}

Then,

\cos x=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\frac{4}{5}

Therefore,

Thus,

\tan x =\frac{3}{4}

x =\tan ^{-1} \frac{3}{4}

\sin ^{-1} \frac{3}{5} =\tan ^{-1} \frac{3}{4}

LHS =2 \sin ^{-1} \frac{3}{5}

=2 \tan ^{-1} \frac{3}{4}

=\tan ^{-1}\left(\frac{2 \times \frac{3}{4}}{1-\left(\frac{3}{4}\right)^{2}}\right)

=\tan ^{-1}\left(\frac{24}{7}\right)

=R H S

Question 4: Prove that \sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5}=\tan ^{-1} \frac{77}{36}.

Solution: Let \sin ^{-1} \frac{8}{17}=x \Rightarrow \sin x=\frac{8}{17}

Then,

Therefore,

\cos x=\sqrt{1-\left(\frac{8}{17}\right)^{2}}

=\sqrt{\frac{225}{289}}=\frac{15}{17}

\tan x =\frac{8}{15}

x =\tan ^{-1} \frac{8}{15}

\sin ^{-1} \frac{8}{17} =\tan ^{-1} \frac{8}{15}

Now, let \sin ^{-1} \frac{3}{5}=y \Rightarrow \sin y=\frac{3}{5}

Then,

\cos y=\sqrt{1-\left(\frac{3}{5}\right)^{2}}

=\sqrt{\frac{16}{25}}=\frac{4}{5}

Therefore,

\tan y =\frac{3}{4}

y =\tan ^{-1} \frac{3}{4}

\sin ^{-1} \frac{3}{5} =\tan ^{-1} \frac{3}{4}

Thus, by using (1) and (2)

LHS =\sin ^{-1} \frac{8}{17}+\sin ^{-1} \frac{3}{5}

=\tan ^{-1} \frac{8}{15}+\tan ^{-1} \frac{3}{4}

=\tan ^{-1}\left[\frac{\frac{8}{15}+\frac{3}{4}}{1-\frac{8}{15} \cdot \frac{3}{4}}\right]

=\tan ^{-1}\left[\frac{\frac{32+45}{60}}{60-24}\right]

=\tan ^{-1} \frac{77}{36}

=R H S

Question 5: Prove that \cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13}=\cos ^{-1} \frac{33}{65}.

Solution: Let \cos ^{-1} \frac{4}{5}=x \Rightarrow \cos x=\frac{4}{5}

Then, Therefore,

\sin x=\sqrt{1-\left(\frac{4}{5}\right)^{2}}=\frac{3}{5}

\tan x =\frac{3}{4}

x =\tan ^{-1} \frac{3}{4}

\cos ^{-1} \frac{4}{5} =\tan ^{-1} \frac{3}{4} —(i)

Now, let \cos ^{-1} \frac{12}{13}=y \Rightarrow \cos y=\frac{12}{13}

Then,

Therefore,

\sin y=\frac{5}{13}

\tan y =\frac{5}{12}

y =\tan ^{-1} \frac{5}{12}

\cos ^{-1} \frac{12}{13} =\tan ^{-1} \frac{5}{12}—(ii)

Thus, by using (1) and (2)

\cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13} =\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{5}{12}

=\tan ^{-1}\left[\frac{\frac{3}{4}+\frac{5}{12}}{1-\frac{3}{4} \cdot \frac{5}{12}}\right]

=\tan ^{-1}\left[\frac{56}{33}\right]

Now, let \cos ^{-1} \frac{33}{65}=z \Rightarrow \cos z=\frac{33}{65}

Then,

\sin z=\sqrt{1-\left(\frac{33}{65}\right)^{2}}=\frac{56}{65}

Therefore,

\tan z =\frac{33}{56}

z =\tan ^{-1} \frac{56}{33}

\cos ^{-1} \frac{33}{65} =\tan ^{-1} \frac{56}{33}

\cos ^{-1} \frac{4}{5}+\cos ^{-1} \frac{12}{13}=\cos ^{-1} \frac{33}{65}

Hence proved.

Question 6: Prove that \cos ^{-1} \frac{12}{13}+\sin ^{-1} \frac{3}{5}=\sin ^{-1} \frac{56}{65}.

Solution: Let \cos ^{-1} \frac{12}{13}=y \Rightarrow \cos y=\frac{12}{13}

Then,

Therefore,

\sin y=\sqrt{1-\left(\frac{12}{13}\right)^{2}}=\frac{5}{13}

\tan y =\frac{5}{12}

y =\tan ^{-1} \frac{5}{12}

\cos ^{-1} \frac{12}{13} =\tan ^{-1} \frac{5}{12}

Now, let \sin ^{-1} \frac{3}{5}=x \Rightarrow \sin x=\frac{3}{5}

Then,

Therefore,

\cos x=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\frac{4}{5}

 

\tan x =\frac{3}{4}

x =\tan ^{-1} \frac{3}{4}

\sin ^{-1} \frac{3}{5} =\tan ^{-1} \frac{3}{4}

Now, let \sin ^{-1} \frac{56}{65}=z \Rightarrow \sin z=\frac{56}{65}

Then,

Therefore,

\cos z=\sqrt{1-\left(\frac{56}{65}\right)^{2}}=\frac{33}{65}

\tan z=\frac{56}{33}

z=\tan ^{-1} \frac{56}{33}

\sin ^{-1} \frac{56}{65}=\tan ^{-1} \frac{56}{33}

Thus, by using (1) and (2)

LHS =\cos ^{-1} \frac{12}{13}+\sin ^{-1} \frac{3}{5}

=\tan ^{-1} \frac{5}{12}+\tan ^{-1} \frac{3}{4}

=\tan ^{-1}\left[\frac{\frac{5}{12}+\frac{3}{4}}{1-\frac{5}{12} \cdot \frac{3}{4}}\right]

\left.=\tan ^{-1}\left[\frac{\frac{20+36}{48-15}}{48}\right] \quad \text { [Using }(3)\right]

=\tan ^{-1}\left(\frac{56}{33}\right)

=\sin ^{-1} \frac{56}{65}

=R H S

 

Question 7: Prove that \tan ^{-1} \frac{63}{16}=\sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5}.

Solution: Let \sin ^{-1} \frac{5}{13}=x \Rightarrow \sin x=\frac{5}{13}

Then,

Therefore,

\cos x=\sqrt{1-\left(\frac{5}{13}\right)^{2}}=\frac{12}{13}

\tan x =\frac{5}{12}

x =\tan ^{-1} \frac{5}{12}

\sin ^{-1} \frac{5}{13} =\tan ^{-1} \frac{5}{12}

Now, let \cos ^{-1} \frac{3}{5}=y \Rightarrow \cos y=\frac{3}{5}

Then,

\sin y=\sqrt{1-\left(\frac{3}{5}\right)^{2}}=\frac{4}{5}

Therefore,

\tan y =\frac{4}{3}

y =\tan ^{-1} \frac{4}{3}

\cos ^{-1} \frac{3}{5} =\tan ^{-1} \frac{4}{3}

Thus, by using (1) and (2)

RHS =\sin ^{-1} \frac{5}{12}+\cos ^{-1} \frac{3}{5}

=\tan ^{-1} \frac{5}{12}+\tan ^{-1} \frac{4}{3}

=\tan ^{-1}\left(\frac{\frac{5}{12}+\frac{4}{3}}{1-\frac{5}{12} \cdot \frac{4}{3}}\right)

=\tan ^{-1}\left(\frac{63}{16}\right)

=L H S

Question 8: Prove that \tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{8}=\frac{\pi}{4}

Solution:

LHS =\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{8}

=\tan ^{-1}\left(\frac{\frac{1}{5}+\frac{1}{7}}{1-\frac{1}{5} \cdot \frac{1}{7}}\right)+\tan ^{-1}\left(\frac{\frac{1}{3}+\frac{1}{8}}{1-\frac{1}{3} \cdot \frac{1}{8}}\right)

=\tan ^{-1}\left(\frac{12}{34}\right)+\tan ^{-1}\left(\frac{11}{23}\right)

=\tan ^{-1}\left(\frac{6}{17}\right)+\tan ^{-1}\left(\frac{11}{23}\right)

=\tan ^{-1}\left(\frac{\frac{6}{17}+\frac{11}{23}}{1-\frac{6}{17} \cdot \frac{11}{23}}\right)

=\tan ^{-1}\left(\frac{325}{325}\right)

=\tan ^{-1}(1)

=\frac{\pi}{4}

=R H S

Question 9: Prove that \tan ^{-1} \sqrt{x}=\frac{1}{2} \cos ^{-1}\left(\frac{1-x}{1+x}\right), x \in[0,1].

Solution: Let x=\tan ^{2} \theta

Then,

Therefore,

\sqrt{x} =\tan \theta

\theta =\tan ^{-1} \sqrt{x}

Thus,

\left(\frac{1-x}{1+x}\right) =\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}

=\cos 2 \theta

RHS =\frac{1}{2} \cos ^{-1}\left(\frac{1-x}{1+x}\right)

=\frac{1}{2} \cos ^{-1}(\cos 2 \theta)

=\frac{1}{2} \times 2 \theta

=\theta

=\tan ^{-1} \sqrt{x}=L H S

Question 10: Prove that \cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)=\frac{x}{2}, x \in\left(0, \frac{\pi}{4}\right).

Solution:

\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right) =\frac{(\sqrt{1+\sin x}+\sqrt{1-\sin x})^{2}}{(\sqrt{1+\sin x})^{2}-(\sqrt{1-\sin x})^{2}} \quad \text { (by rationalizing) }

=\frac{(1+\sin x)+(1-\sin x)+2 \sqrt{(1+\sin x)(1-\sin x)}}{1+\sin x-1+\sin x}

=\frac{2\left(1+\sqrt{1-\sin ^{2} x}\right)}{2 \sin x}=\frac{1+\cos x}{\sin x}

=\frac{2 \cos ^{2} \frac{x}{2}}{2 \sin \frac{x}{2} \cos \frac{x}{2}}

=\cot \frac{x}{2}

Thus,

L H S =\cot ^{-1}\left(\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right)

=\cot ^{-1}\left(\cot \frac{x}{2}\right)

=\frac{x}{2}=R H S

Question 11: Prove that \tan ^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)=\frac{\pi}{2}-\frac{1}{2} \cos ^{-1} x,-\frac{1}{\sqrt{2}} \leq x \leq 1

Solution: Let x=\cos 2 \theta \Rightarrow \theta=\frac{1}{2} \cos ^{-1} x

Thus,

L H S =\tan ^{-1}\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)

=\tan ^{-1}\left(\frac{\sqrt{1+\cos 2 \theta}-\sqrt{1-\cos 2 \theta}}{\sqrt{1+\cos 2 \theta}+\sqrt{1-\cos 2 \theta}}\right)

=\tan ^{-1}\left(\frac{\sqrt{2 \cos ^{2} \theta}-\sqrt{2 \sin ^{2} \theta}}{\sqrt{2 \cos ^{2} \theta}+\sqrt{2 \sin ^{2} \theta}}\right)

=\tan ^{-1}\left(\frac{\sqrt{2} \cos \theta-\sqrt{2} \sin \theta}{\sqrt{2} \cos \theta+\sqrt{2} \sin \theta}\right)

=\tan ^{-1}\left(\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}\right)

=\tan ^{-1}\left(\frac{1-\tan \theta}{1+\tan \theta}\right)

=\tan ^{-1} 1-\tan -1(\tan \theta)

=\frac{\pi}{4}-\theta

=\frac{\pi}{4}-\frac{1}{2} \cos^{-1}x =R H S

Question 12: Prove that \frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}=\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}

Solution: LHS =\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}

=\frac{9}{4}\left(\frac{\pi}{2}-\sin ^{-1} \frac{1}{3}\right)

=\frac{9}{4}\left(\cos ^{-1} \frac{1}{3}\right)

Now, let \cos ^{-1} \frac{1}{3}=x \Rightarrow \cos x=\frac{1}{3}

Therefore,

\sin x =\sqrt{1-\left(\frac{1}{3}\right)^{2}}

=\frac{2 \sqrt{2}}{3}

x =\sin ^{-1} \frac{2 \sqrt{2}}{3}

\cos ^{-1} \frac{1}{3} =\sin ^{-1} \frac{2 \sqrt{2}}{3}

Thus, by using (1) and (2)

\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}=\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}

Hence proved.

Question 13: Solve 2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x).

Solution: It is given that 2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)

Since, 2 \tan ^{-1}(x)=\tan ^{-1} \frac{2 x}{1-x^{2}}

Hence, Therefore,

\Rightarrow \tan ^{-1}\left(\frac{2 \cos x}{1-\cos ^{2} x}\right)=\tan ^{-1}(2 \operatorname{cosec} x)

\Rightarrow\left(\frac{2 \cos x}{1-\cos ^{2} x}\right)=(2 \operatorname{cosec} x)

\Rightarrow \frac{2 \cos x}{\sin ^{2} x}=\frac{2}{\sin x}

\Rightarrow \cos x=\sin x

\Rightarrow \tan x=1

\Rightarrow \tan x=\tan \frac{\pi}{4}

x=n \pi+\frac{\pi}{4} \text {, where } n \in Z \text {. }

Question 14: Solve \tan ^{-1} \frac{1-x}{1+x}=\frac{1}{2} \tan ^{-1} x,(x>0)

Solution: Since { }^{\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y}}

Hence,

\Rightarrow \tan ^{-1} \frac{1-x}{1+x}=\frac{1}{2} \tan ^{-1} x

\Rightarrow \tan ^{-1} 1-\tan ^{-1} x=\frac{1}{2} \tan ^{-1} x

\Rightarrow \frac{\pi}{4}=\frac{3}{2} \tan ^{-1} x

\Rightarrow \tan ^{-1} x=\frac{\pi}{6}

\Rightarrow x=\tan \frac{\pi}{6}

\Rightarrow x=\frac{1}{\sqrt{3}}

Question 15: Solve \sin \left(\tan ^{-1} x\right),|x|<1 is equal to

(A) \frac{x}{\sqrt{1-x^{2}}}

(B) \frac{1}{\sqrt{1-x^{2}}}

(C) \frac{1}{\sqrt{1+x^{2}}}

(D) \frac{x}{\sqrt{1+x^{2}}}

Solution: Let \tan y=x

Therefore,

\sin y=\frac{x}{\sqrt{1+x^{2}}}

Now, let \tan ^{-1} x=y

Therefore,

Hence,

y=\sin ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right)

Thus,

\tan ^{-1} x=\sin ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right)

\sin \left(\tan ^{-1} x\right) =\sin \left(\sin ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right)\right)

=\frac{x}{\sqrt{1+x^{2}}}

Thus, the correct option is \mathrm{D}.

Question 16: Solve: \sin ^{-1}(1-x)-2 \sin ^{-1} x=\frac{\pi}{2}, then x is equal to

(A) 0, \frac{1}{2}

(B) 1, \frac{1}{2}

(C) 0

(D) \frac{1}{2}

Solution: It is given that \sin ^{-1}(1-x)-2 \sin ^{-1} x=\frac{\pi}{2}

\Rightarrow \sin ^{-1}(1-x)-2 \sin ^{-1} x=\frac{\pi}{2}

\Rightarrow-2 \sin ^{-1} x=\frac{\pi}{2}-\sin ^{-1}(1-x)

\Rightarrow-2 \sin ^{-1} x=\cos ^{-1}(1-x)

Let \sin ^{-1} x=y \Rightarrow \sin y=x

Hence,

\cos y =\sqrt{1-x^{2}}

y =\cos ^{-1}\left(\sqrt{1-x^{2}}\right)

\sin ^{-1} x =\cos ^{-1} \sqrt{1-x^{2}}

From equation (1), we have

-2 \cos ^{-1} \sqrt{1-x^{2}}=\cos ^{-1}(1-x)

Put x=\sin y

Therefore,

\Rightarrow-2 \cos ^{-1} \sqrt{1-\sin ^{2} y}=\cos ^{-1}(1-\sin y)

\Rightarrow-2 \cos ^{-1}(\cos y)=\cos ^{-1}(1-\sin y)

\Rightarrow-2 y=\cos ^{-1}(1-\sin y)

\Rightarrow 1-\sin y=\cos (-2 y)

\Rightarrow 1-\sin y=\cos 2 y

\Rightarrow 1-\sin y=1-2 \sin ^{2} y

\Rightarrow 2 \sin 2 y-\sin y=0

\Rightarrow \sin y(2 \sin y-1)=0

\Rightarrow \sin y=0, \frac{1}{2}

x=0, \frac{1}{2}

When x=\frac{1}{2}, it does not satisfy the equation.

Hence, x=0 is the only solution

Thus, the correct option is \mathrm{C}.

Question 17: Solve \tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1} \frac{x-y}{x+y} is equal to

(A) \frac{\pi}{2}

(B) \frac{\pi}{3}

(C) \frac{\pi}{4}

(D) \frac{-3 \pi}{4}

Solution:   \tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1} \frac{x-y}{x+y} =\tan ^{-1}\left[\frac{\frac{x}{y}-\frac{x-y}{x+y}}{1+\left(\frac{x}{y}\right)\left(\frac{x-y}{x+y}\right)}\right]

=\tan ^{-1}\left[\frac{\left.\frac{x(x+y)-y(x-y)}{y(x+y)}\right]}{y(x+y)}\right]

=\tan ^{-1}\left(\frac{x^{2}+x y-x y+y^{2}}{x y+y^{2}+x^{2}-x y}\right)

=\tan ^{-1}(1)

=\tan ^{-1}\left(\tan \frac{\pi}{4}\right)

=\frac{\pi}{4}

Thus, the correct option is C.


class 12 inverse trigonometric functions multiple choice

Case study inverse trigonometry 2
Two men on either side of a temple 30 metres high observes

Leave a Comment