class 12 maths exercise 3.3 solution

EXERCISE 3.3 (Matrix)

class 12 maths exercise 3.3 solution

Question1: Find the transpose of each of the following matrices:

(i) \begin{bmatrix}5\\\frac{1}{2}\\-1\end{bmatrix}

(ii) \begin{bmatrix}1&-1\\2&3\end{bmatrix}

(iii) \begin{bmatrix}-1&5&6\\\sqrt3&5&6\\2&3&1\end{bmatrix}

Solution: (i) Let A=\begin{bmatrix}5\\\frac{1}{2}\\-1\end{bmatrix}

Then A^T=\begin{bmatrix}5&\frac{1}{2}&-1\end{bmatrix}

(ii) Let A=\begin{bmatrix}1&-1\\2&3\end{bmatrix}
Then
A^T=\begin{bmatrix}1&2\\-1&3\end{bmatrix}

(iii) Let A=\begin{bmatrix}-1&5&6\\\sqrt3&5&6\\2&3&1\end{bmatrix}
Then
A^T=\begin{bmatrix}-1&\sqrt3&2\\5&5&3\\6&6&1\end{bmatrix}

Question2: A=\begin{bmatrix}-1&2&3\\5&7&9\\-2&1&1\end{bmatrix} andB=\begin{bmatrix}-4&1&-5\\1&2&0\\1&3&1\end{bmatrix} Then verify that

(i) (A+B)^T=A^T+B^T

(ii)(A-B)^T=A^T-B^T

Solution:  (i)A=\begin{bmatrix}-1&2&3\\5&7&9\\-2&1&1\end{bmatrix} and B=\begin{bmatrix}-4&1&-5\\1&2&0\\1&3&1\end{bmatrix}
A^T=\begin{bmatrix}-1&5&-2\\2&7&1\\3&9&1\end{bmatrix}
B^T=\begin{bmatrix}-4&1&1\\1&2&3\\-5&0&1\end{bmatrix}

(A+B)=\begin{bmatrix}-1&2&3\\5&7&9\\-2&1&1\end{bmatrix}+\begin{bmatrix}-4&1&-5\\1&2&0\\1&3&1\end{bmatrix}

=\begin{bmatrix}-1-4&2+1&3-5\\5+1&7+2&9+0\\-2+1&1+3&1+1\end{bmatrix}
=\begin{bmatrix}-5&3&-2\\6&9&9\\-1&4&2\end{bmatrix}
(A+B)^T=\begin{bmatrix}-5&6&-1\\3&9&4\\-2&9&2\end{bmatrix}
Now
A^T+B^T=\begin{bmatrix}-1&5&-2\\2&7&1\\3&9&1\end{bmatrix}+\begin{bmatrix}-4&1&1\\1&2&3\\-5&0&1\end{bmatrix}

=\begin{bmatrix}-1-4&5+1&-2+1\\2+1&7+2&1+3\\3-5&9+0&1+1\end{bmatrix}
=\begin{bmatrix}-5&6&-1\\3&9&4\\-2&9&2\end{bmatrix}

Hence (A+B)^T=A^T+B^T

(ii)  (A-B)=\begin{bmatrix}-1&2&3\\5&7&9\\-2&1&1\end{bmatrix}-\begin{bmatrix}-4&1&-5\\1&2&0\\1&3&1\end{bmatrix}
=\begin{bmatrix}3&1&8\\4&5&9\\-3&-2&0\end{bmatrix}
Then
(A-B)^T=\begin{bmatrix}3&4&-3\\1&5&-2\\8&9&0\end{bmatrix}

A^T-B^T=\begin{bmatrix}-1&5&-2\\2&7&1\\3&9&1\end{bmatrix}-\begin{bmatrix}-4&1&1\\1&2&3\\-5&0&1\end{bmatrix}

=\begin{bmatrix}3&4&-3\\1&5&-2\\8&9&0\end{bmatrix}
Thus
(A-B)^T=A^T-B^T

Question 5: For the matrices A and B, verify that(AB)^T=B^TA^T

(i) A=\begin{bmatrix}1\\-4\\3\end{bmatrix},B=\begin{bmatrix}-1&2&1\end{bmatrix}

(ii)  A=\begin{bmatrix}0\\1\\2\end{bmatrix},B=\begin{bmatrix}1&5&7\end{bmatrix}

Solution: (i) It is given that A=\begin{bmatrix}1\\-4\\3\end{bmatrix} and B=\begin{bmatrix}-1&2&1\end{bmatrix}

AB=\begin{bmatrix}1\\-4\\3\end{bmatrix}\begin{bmatrix}-1&2&1\end{bmatrix}

=\begin{bmatrix}-1&2&1\\4&-8&-4\\-3&6&3\end{bmatrix}

Therefore,

(AB)^T=\begin{bmatrix}-1&4&-3\\2&-8&6\\1&-4&3\end{bmatrix}
Now,

A^T=\begin{bmatrix}1&-4&3\end{bmatrix}

B^T=\begin{bmatrix}-1\\2\\1\end{bmatrix}

B^TA^T=\begin{bmatrix}-1\\2\\1\end{bmatrix}\begin{bmatrix}1&-4&3\end{bmatrix}

\Rightarrow B^TA^T=\begin{bmatrix}-1&4&-3\\2&-8&6\\1&-4&3\end{bmatrix}
Thus,

(AB)^T=B^TA^T

(ii) It is given that A=\begin{bmatrix}0\\1\\2\end{bmatrix} and B=\begin{bmatrix}1&5&7\end{bmatrix}

Hence

AB=\begin{bmatrix}0\\1\\2\end{bmatrix}\begin{bmatrix}1&5&7\end{bmatrix}

AB=\begin{bmatrix}0&0&0\\1&5&7\\2&10&14\end{bmatrix}
Therefore,

(AB)^T=\begin{bmatrix}0&1&2\\0&5&10\\0&7&14\end{bmatrix}
Now,

A^T=\begin{bmatrix}0&1&2\end{bmatrix} and
B^T=\begin{bmatrix}1\\5\\7\end{bmatrix}

Therefore,

B^TA^T=\begin{bmatrix}1\\5\\7\end{bmatrix}\begin{bmatrix}0&1&2\end{bmatrix}

B^TA^T=\begin{bmatrix}0&1&2\\0&5&10\\0&7&14\end{bmatrix}
Thus,

(AB)^T=B^TA^T

Question 6: If (i) \begin{bmatrix}\cos\alpha&\sin\alpha\\-\sin\alpha&\cos\alpha\end{bmatrix} Then verify A'A=I

(ii)\begin{bmatrix}\sin\alpha&\cos\alpha\\-\cos\alpha&\sin\alpha\end{bmatrix} Then verify A'A=I

Solution: (i) Since A=\begin{bmatrix}\cos\alpha&\sin\alpha\\-\sin\alpha&\cos\alpha\end{bmatrix}
Therefore,

A'=\begin{bmatrix}\cos\alpha&-\sin\alpha\\\sin\alpha&\cos\alpha\end{bmatrix}
Now,

A'A=\begin{bmatrix}\cos\alpha&\sin\alpha\\-\sin\alpha&\cos\alpha\end{bmatrix}\begin{bmatrix}\cos\alpha&-\sin\alpha\\\sin\alpha&\cos\alpha\end{bmatrix}

=\begin{bmatrix}\cos^2\alpha+\sin^2\alpha&-\sin\alpha\cos\alpha+\sin\alpha\cos\alpha\\-\sin\alpha\cos\alpha+\sin\alpha\cos\alpha&\cos^2\alpha+\sin^2\alpha\end{bmatrix}

=\begin{bmatrix}1&0\\0&1\end{bmatrix}
Thus

A'A=I

(ii)  It is given that A=\begin{bmatrix}\sin\alpha&\cos\alpha\\-\cos\alpha&\sin\alpha\end{bmatrix}
Therefore

A'=\begin{bmatrix}\sin\alpha&-\cos\alpha\\\cos\alpha&\sin\alpha\end{bmatrix}

Now

A'A=\begin{bmatrix}\sin\alpha&\cos\alpha\\-\cos\alpha&\sin\alpha\end{bmatrix}\begin{bmatrix}\sin\alpha&-\cos\alpha\\\cos\alpha&\sin\alpha\end{bmatrix}

=\begin{bmatrix}\sin^2\alpha+\cos^2\alpha&-\sin\alpha\cos\alpha+\sin\alpha\cos\alpha\\-\sin\alpha\cos\alpha+\sin\alpha\cos\alpha&\cos^2\alpha+\sin^2\alpha\end{bmatrix}

=\begin{bmatrix}1&0\\0&1\end{bmatrix}
Thus
A'A=I

Question 7:(i)  Show that the matrix A=\begin{bmatrix}1&-1&5\\-1&2&1\\5&1&3\end{bmatrix} is a symmetric matrix.

(ii)  Show that the matrix A=\begin{bmatrix}0&1&-1\\-1&0&1\\1&-1&0\end{bmatrix} is a skew symmetric matrix.

Solution:  (i) Since A=\begin{bmatrix}1&-1&5\\-1&2&1\\5&1&3\end{bmatrix}
Now

A'=\begin{bmatrix}1&-1&5\\-1&2&1\\5&1&3\end{bmatrix}

=A
Hence, A is a symmetric matrix.

(ii)  A=\begin{bmatrix}0&1&-1\\-1&0&1\\1&-1&0\end{bmatrix}

A'=\begin{bmatrix}0&-1&1\\1&0&-1\\-1&1&0\end{bmatrix}

\Rightarrow A'=-\begin{bmatrix}0&1&-1\\-1&0&1\\1&-1&0\end{bmatrix}

\Rightarrow A'=-A
Hence, A is a skew symmetric matrix.

Question 8: For the matrix A=\begin{bmatrix}1&0\\0&1\end{bmatrix}, verify that

(i)  </strong>(A+A') is a symmetric matrix.

(ii) (A-A') is a skew symmetric matrix.

Solution: It is given that A=\begin{bmatrix}1&5\\6&7\end{bmatrix}

A'=\begin{bmatrix}1&6\\5&7\end{bmatrix}
Hence,

(i) (A+A')=\begin{bmatrix}1&5\\6&7\end{bmatrix}+\begin{bmatrix}1&6\\5&7\end{bmatrix}

=\begin{bmatrix}2&11\\11&14\end{bmatrix}
Therefore,

(A+A')'=\begin{bmatrix}2&11\\11&14\end{bmatrix}

=(A+A')

Thus (A+A’) is a symmetric matrix.

(ii) (A-A')=\begin{bmatrix}1&5\\6&7\end{bmatrix}-\begin{bmatrix}1&6\\5&7\end{bmatrix}

=\begin{bmatrix}0&1\\-1&0\end{bmatrix}
Therefore,

(A-A')'=-\begin{bmatrix}0&-1\\1&0\end{bmatrix}

(A-A')'=-(A-A')

Thus,(A-A') is a skew symmetric matrix.

Question 9: Find\frac{1}{2}(A+A') and \frac{1}{2}(A-A') ,When

A=\begin{bmatrix}0&a&b\\-a&0&c\\-b&-c&0\end{bmatrix}

Solution: It is given that A=\begin{bmatrix}0&a&b\\-a&0&c\\-b&-c&0\end{bmatrix}

Hence,

A'=\begin{bmatrix}0&-a&-b\\a&0&-c\\b&c&0\end{bmatrix}
Now,

(A+A')=\begin{bmatrix}0&a&b\\-a&0&c\\-b&-c&0\end{bmatrix}+\begin{bmatrix}0&-a&-b\\a&0&-c\\b&c&0\end{bmatrix}

=\begin{bmatrix}0&a&b\\-a&0&c\\-b&-c&0\end{bmatrix}

=\begin{bmatrix}0&0&0\\0&0&0\\0&0&0\end{bmatrix}
Therefore,

\frac{1}{2}(A+A')=\begin{bmatrix}0&0&0\\0&0&0\\0&0&0\end{bmatrix}

Now,

(A-A')=\begin{bmatrix}0&a&b\\-a&0&c\\-b&-c&0\end{bmatrix}-\begin{bmatrix}0&-a&-b\\a&0&-c\\b&c&0\end{bmatrix}

=\begin{bmatrix}0&2a&2b\\-2a&0&2c\\-2b&-2c&0\end{bmatrix}
Thus,

\frac{1}{2}(A-A')=\begin{bmatrix}0&a&b\\-a&0&c\\-b&-c&0\end{bmatrix}

Question 10: Express the following as the sum of a symmetric and skew symmetric matrix:

(i) \begin{bmatrix}3&5\\1&-1\end{bmatrix}

(ii) \begin{bmatrix}6&-2&2\\-2&3&-1\\2&-1&3\end{bmatrix}

(iii) \begin{bmatrix}3&3&-1\\-2&-2&1\\-4&-5&2\end{bmatrix}

(iv) \begin{bmatrix}1&5\\-1&2\end{bmatrix}

Solution:(i) Let A=\begin{bmatrix}3&5\\1&-1\end{bmatrix}
Hence,

A'=\begin{bmatrix}3&1\\5&-1\end{bmatrix}
Now,

(A+A')=\begin{bmatrix}3&5\\1&-1\end{bmatrix}+\begin{bmatrix}3&1\\5&-1\end{bmatrix}+

=\begin{bmatrix}6&6\\6&-2\end{bmatrix}
Let,

P=\frac{1}{2}(A+A')

=\frac{1}{2}\begin{bmatrix}6&6\\6&-2\end{bmatrix}

=\begin{bmatrix}3&3\\3&-1\end{bmatrix}
Now,

P’=\begin{bmatrix}3&3\\3&-1\end{bmatrix}

=P

Thus,

P=\frac{1}{2}(A+A') is a symmetric matrix.
Now,

(A-A')=\begin{bmatrix}3&5\\1&-1\end{bmatrix}-\begin{bmatrix}3&1\\5&-1\end{bmatrix}

=\begin{bmatrix}0&4\\-4&0\end{bmatrix}
Let,

Q=\frac{1}{2}(A-A')

=\frac{1}{2}\begin{bmatrix}0&4\\-4&0\end{bmatrix}

Q=\begin{bmatrix}0&2\\-2&0\end{bmatrix}
Now,

Q'=\begin{bmatrix}0&-2\\2&0\end{bmatrix}

=-\begin{bmatrix}0&2\\-2&0\end{bmatrix}

Q'=-Q

Q=\frac{1}{2}(A-A') is a skew symmetric matrix.
Representing Aas the sum of P and Q:

P+Q=\begin{bmatrix}3&3\\3&-1\end{bmatrix}+\begin{bmatrix}0&2\\-2&0\end{bmatrix}

=\begin{bmatrix}3&5\\1&-1\end{bmatrix}

=A

(ii)  Let A=\begin{bmatrix}6&-2&2\\-2&3&-1\\2&-1&3\end{bmatrix}
Hence,

A'=\begin{bmatrix}6&-2&2\\-2&3&-1\\2&-1&3\end{bmatrix}

Now,
.
(A+A')=\begin{bmatrix}6&-2&2\\-2&3&-1\\2&-1&3\end{bmatrix}+\begin{bmatrix}6&-2&2\\-2&3&-1\\2&-1&3\end{bmatrix}

=\begin{bmatrix}12&-4&4\\-4&6&-2\\4&-2&6\end{bmatrix}
Let,

P=\frac{1}{2}(A+A')

=\frac{1}{2}\begin{bmatrix}12&-4&4\\-4&6&-2\\4&-2&6\end{bmatrix}

=\begin{bmatrix}6&-2&2\\-2&3&-1\\2&-1&3\end{bmatrix}
Now,

P'=\begin{bmatrix}6&-2&2\\-2&3&-1\\2&-1&3\end{bmatrix}

=P

Thus P=\frac{1}{2}(A+A') is a symmetric matrix.
Now,

(A-A')=\begin{bmatrix}6&-2&2\\-2&3&-1\\2&-1&3\end{bmatrix}-\begin{bmatrix}6&-2&2\\-2&3&-1\\2&-1&3\end{bmatrix}

=\begin{bmatrix}0&0&0\\0&0&0\\0&0&0\end{bmatrix}
Let,

Q=\frac{1}{2}(A-A')

=\frac{1}{2}\begin{bmatrix}0&0&0\\0&0&0\\0&0&0\end{bmatrix}

Q'=\begin{bmatrix}0&0&0\\0&0&0\\0&0&0\end{bmatrix}

=-Q

Thus, Q=\frac{1}{2}(A-A') is a skew symmetric matrix.
Representing A as the sum of Pand Q:

P+Q=\begin{bmatrix}6&-2&2\\-2&3&-1\\2&-1&3\end{bmatrix}+\begin{bmatrix}0&0&0\\0&0&0\\0&0&0\end{bmatrix}

=\begin{bmatrix}6&-2&2\\-2&3&-1\\2&-1&3\end{bmatrix}

=A

(iii)  LetA=\begin{bmatrix}3&3&-1\\-2&-2&1\\-4&-5&2\end{bmatrix}
Hence,

A'=\begin{bmatrix}3&-2&-4\\3&-2&5\\-1&1&2\end{bmatrix}

Now,

.(A+A')=\begin{bmatrix}3&3&-1\\-2&-2&1\\-4&-5&2\end{bmatrix}+\begin{bmatrix}3&-2&-4\\3&-2&5\\-1&1&2\end{bmatrix}

=\begin{bmatrix}6&1&-5\\1&-4&-4\\-5&-4&4\end{bmatrix}
Let,

P=\frac{1}{2}(A+A')

=\frac{1}{2}\begin{bmatrix}6&1&-5\\1&-4&-4\\-5&-4&4\end{bmatrix}

=\begin{bmatrix}3&\frac{1}{2}&-\frac{5}{2}\\\frac{1}{2}&-2&-2\\-\frac{5}{2}&-2&2\end{bmatrix}
Now,

P'=\begin{bmatrix}3&\frac{1}{2}&-\frac{5}{2}\\\frac{1}{2}&-2&-2\\-\frac{5}{2}&-2&2\end{bmatrix}

=P

Thus P=\frac{1}{2}(A+A') is a symmetric matrix.

Now,

(A-A')=\begin{bmatrix}3&3&-1\\-2&-2&1\\-4&-5&2\end{bmatrix}-\begin{bmatrix}3&-2&-4\\3&-2&5\\-1&1&2\end{bmatrix}

=\begin{bmatrix}0&5&3\\-5&0&6\\-3&-6&0\end{bmatrix}
Let,

Q=\frac{1}{2}(A-A')

=\frac{1}{2}\begin{bmatrix}0&5&3\\-5&0&6\\-3&-6&0\end{bmatrix}

=\begin{bmatrix}0&\frac{5}{2}&\frac{3}{2}\\-\frac{5}{2}&0&3\\-\frac{3}{2}&-3&0\end{bmatrix}

Q'=\begin{bmatrix}0&-\frac{5}{2}&-\frac{3}{2}\\\frac{5}{2}&0&-3\\\frac{3}{2}&3&0\end{bmatrix}

=-\begin{bmatrix}0&\frac{5}{2}&\frac{3}{2}\\-\frac{5}{2}&0&3\\-\frac{3}{2}&-3&0\end{bmatrix}

=-Q
Thus, Q=\frac{1}{2}(A-A') is a skew symmetric matrix.
Representing A as the sum of Pand Q:

P+Q=\begin{bmatrix}3&\frac{1}{2}&-\frac{5}{2}\\\frac{1}{2}&-2&-2\\-\frac{5}{2}&-2&2\end{bmatrix}+\begin{bmatrix}0&\frac{5}{2}&\frac{3}{2}\\-\frac{5}{2}&0&3\\-\frac{3}{2}&-3&0\end{bmatrix}

=\begin{bmatrix}3&3&-1\\-2&-2&1\\-4&-5&2\end{bmatrix}

=A

(iv)  Let A=\begin{bmatrix}1&5\\-1&2\end{bmatrix}
Hence,

A'=\begin{bmatrix}1&-1\\5&2\end{bmatrix}
Now,

(A+A')=\begin{bmatrix}1&5\\-1&2\end{bmatrix}+\begin{bmatrix}1&-1\\5&2\end{bmatrix}

=\begin{bmatrix}2&4\\4&4\end{bmatrix}
Let,

P=\frac{1}{2}(A+A')

=\frac{1}{2}\begin{bmatrix}2&4\\4&4\end{bmatrix}

=\begin{bmatrix}1&2\\2&2\end{bmatrix}
Now,

P’=\begin{bmatrix}1&2\\2&2\end{bmatrix}

=P
Thus,

P=\frac{1}{2}(A+A') is a symmetric matrix.

Now,

(A-A')=\begin{bmatrix}1&5\\-1&2\end{bmatrix}-\begin{bmatrix}1&-1\\5&2\end{bmatrix}

=\begin{bmatrix}0&6\\-6&0\end{bmatrix}
Let,

Q=\frac{1}{2}(A-A')

=\frac{1}{2}\begin{bmatrix}0&6\\-6&0\end{bmatrix}

Q=\begin{bmatrix}0&3\\-3&0\end{bmatrix}
Now,

Q'=\begin{bmatrix}0&-3\\3&0\end{bmatrix}

=-\begin{bmatrix}0&3\\-3&0\end{bmatrix}

Q'=-Q

Q=\frac{1}{2}(A-A') is a skew symmetric matrix.
Representing Aas the sum of P and Q:

P+Q=\begin{bmatrix}1&2\\2&2\end{bmatrix}+\begin{bmatrix}0&3\\-3&0\end{bmatrix}

=\begin{bmatrix}1&5\\-1&2\end{bmatrix}

=A

Question 11: If A,Bare symmetric matrices of the same order, thenAB=BA is a

(A) Skew symmetric matrix

(B) Symmetric matrix

(C) Zero matrix

(D) Identity matrix

Solution:The Correct option is A.

If and are symmetric matrices of the same order, then

Solution: If AandBare symmetric matrices of the same order, then

A'=A and B'=B—(1)

Now consider,

(AB-BA)'=(AB)'-(BA)'

=B'A'-A'B'

=BA-AB

=-(AB-BA)

Therefore,

(AB-BA)'=-(AB-BA)

Thus,AB-BA is a skew symmetric matrix.

 

Question 12: If A=\begin{bmatrix}\cos\alpha&-\sin\alpha\\\sin\alpha&\cos\alpha\end{bmatrix}then A+A''=I,if the value of \alpha is:

(A) \frac{\pi}{6}                (B)  \frac{\pi}{3}

(C) \pi                    (D)  \frac{3\pi}{2}

Solution:Thus, the correct option is B.

It is given that

A=\begin{bmatrix}\cos\alpha&-\sin\alpha\\\sin\alpha&\cos\alpha\end{bmatrix}
Hence,

A'=\begin{bmatrix}\cos\alpha&\sin\alpha\\-\sin\alpha&\cos\alpha\end{bmatrix}
NOW,

A+A'=I

Therefore,

\begin{bmatrix}\cos\alpha&-\sin\alpha\\\sin\alpha&\cos\alpha\end{bmatrix}+\begin{bmatrix}\cos\alpha&\sin\alpha\\-\sin\alpha&\cos\alpha\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}

\begin{bmatrix}2\cos\alpha&0\\0&2\cos\alpha\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}
Comparing the corresponding elements of the two matrices, we have:

\Rightarrow2\cos\alpha=1

\Rightarrow\cos\alpha=\frac{1}{2}

\alpha=\frac{\pi}{3}


Class 12 matrix multiple choice question

Case study problem matrix 2
Amit, Biraj and chirag were giventhe task of creating a square matrix of order 2
Case study problem matrix 3
Three schools DPS, CVC and KVS decided to organize a fair for collecting money

 

Leave a Comment