Chapter 5 Miscellaneous ncert math solution class 11

Chapter – 5(Miscellaneous Exercise)

Complex Numbers and Quadratic Equations

Chapter 5 Miscellaneous ncert math solution class 11

Question 1: Evaluate: \left[i^{18}+\left(\frac{1}{i}\right)^{25}\right]^{3}

Solution : Given\left[i^{18}+\left(\frac{1}{i}\right)^{25}\right]^{3}

=\left(i^{4}\right)^{4} \cdot i^{2}+\left\{\frac{1}{\left(i^{4}\right)^{6} . i}\right\}^{3}

=\left[1 \cdot i^{2}+\left\{\frac{1}{1 . i}\right\}\right]^{3} \quad\left[\because i^{4}=1\right]

=\left[-1+\frac{1}{i} \times \frac{i}{i}\right]^{3} \quad\left[\because i^{2}=-1\right]

=\left[-1+\frac{i}{i^{2}}\right]^{3}\quad\left[\because i^{2}=-1\right]

=[-1-i]^{3}

=[-1-i]^{3}

=(-1)^{3}+(-i)^{3}+3(-1)^{2}(-i)+3(-1)(-i)^{2}

=-1-i^{3}-3 i-3 i^{2}

=-1+i-3 i+3 \quad\left[\because i^{2}=-1\right]

=2-2 i

Question 2: For any two complex numbers z_{1} and z_{2}, prove that:
\operatorname{Re}\left(z_{1} z_{2}\right)=\operatorname{Re} z_{1} \operatorname{Re} z_{2}-\operatorname{Im} z_{1} \operatorname{Im} z_{2} \text {. }

Solution: Let z_{1}=x_{1}+i y_{1} and z_{2}=x_{2}+i y_{2}

Therefore, z_{1} z_{2}=\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)

=x_{1} x_{2}+i x_{1} y_{2}+i x_{2} y_{1}+i^{2} y_{1} y_{2}

=x_{1} x_{2}+i x_{1} y_{2}+i x_{2} y_{1}-y_{1} y_{2} \quad\left[\because i^{2}=-1\right]

=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right)

Now \operatorname{Re}\left(z_{1} z_{2}\right)=x_{1} x_{2}-y_{1} y_{2}

=\operatorname{Re} z_{1} \operatorname{Re} z_{2}-\operatorname{Im} z_{1} \operatorname{Im} z_{2}

Question 3: Reduce \left(\frac{1}{1-4 i}-\frac{2}{1+i}\right)\left(\frac{3-4 i}{5+i}\right) to the standard form.

Solution :Given that \left(\frac{1}{1-4 i}-\frac{2}{1+i}\right)\left(\frac{3-4 i}{5+i}\right)

=\left[\frac{1+i-2(1-4 i)}{(1-4 i)(1+i)}\right]\left(\frac{3-4 i}{5+i}\right)

=\left[\frac{1+i-2+8 i}{1+i-4 i-4 i^{2}}\right]\left(\frac{3-4 i}{5+i}\right)

=\left[\frac{-1+9 i}{1-3 i+4}\right]\left(\frac{3-4 i}{5+i}\right) \quad\left[\because i^{2}=-1\right]

=\left[\frac{-1+9 i}{5-3 i}\right]\left(\frac{3-4 i}{5+i}\right)

=\frac{-3+4 i+27 i-36 i^{2}}{25+5 i-15 i-3 i^{2}}

=\frac{-3+31 i+36}{25-10 i+3} \quad\left[\because i^{2}=-1\right]

=\frac{33+31 i}{28-10 i}

=\frac{33+31 i}{2(14-5 i)}

=\frac{33+31 i}{2(14-5 i)} \times \frac{(14+5 i)}{(14+5 i)}

=\frac{462+165 i+434 i+155 i^{2}}{2\left[14^{2}-(5 i)^{2}\right]}

=\frac{307+599 i}{2\left(196-25 i^{2}\right)}

=\frac{307+599 i}{2(196+25)}

=\frac{307+599 i}{2(221)}

=\frac{307+599 i}{442}

=\frac{307}{442}+\frac{599}{442} i

Question 4: If x-i y=\sqrt{\frac{a-i b}{c-i d}} prove that x^{2}+y^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}

Solution : Given that x-i y=\sqrt{\frac{a-i b}{c-i d}}

Squaring both side

(x-iy)^2=\frac{a-ib}{c-id}--(i)

Taking conjugate of eq(i) using formula \overline{(\frac{z_1}{z_2})}=\frac{\overline{z_1}}{\overline{z_2}}

(x+iy)^2 =\frac{a+ib}{c+id}--(ii)

Multiply (i) and (ii)

(x-iy)^2.(x+iy)^2=\frac{a-ib}{c-id}.\frac{a+ib}{c+id}

\Rightarrow [(x-iy)(x+iy)]^2=\dfrac{(a)^2-(ib)^2}{(c)^2-(id)^2}

\Rightarrow [x^2-i^2y^2]=\dfrac{a^2-i^2b^2}{c^2-i^2d^2}

\Rightarrow x^2+y^2=\dfrac{a^2+b^2}{c^2+d^2}

Question 5: Convert into polar form:

(i) \frac{1+7 i}{(2-i)^{2}}

(ii) \frac{1+3 i}{1-2 i}

Solution : (i) \frac{1+7 i}{(2-i)^{2}}

=\frac{1+7 i}{4+i^{2}-4 i}

=\frac{1+7 i}{4-1-4 i} \quad\left[\because i^{2}=-1\right]

=\frac{1+7 i}{3-4 i} \times \frac{3+4 i}{3+4 i}

=\frac{3+4 i+21 i+28 i^{2}}{3^{2}-4^{2} i^{2}}

=\frac{3+25 i-28}{9+16} \quad\left[\because i^{2}=-1\right]

=\frac{-25+25 i}{25}=-1+i

Let Z=-1+i=r(\cos \theta+i \sin \theta)

Comparing the real and imaginary parts, we have

r \cos \theta=-1--(i)

r \sin \theta=1--(ii)

Squaring and adding equation (1) and (2), we have

r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=1+1

\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=2 \quad \Rightarrow r^{2}=2

\Rightarrow r=\sqrt{2} \quad[\because r=|Z|>0]

Therefore, modulus =\sqrt{2}

Now, dividing equation (2) by (1), we have

\frac{r \sin \theta}{r \cos \theta}=\frac{1}{-1} \quad \Rightarrow \tan \theta=-1

From the equations (1), (2) and (3), it is clear that \cos \theta and \tan \theta are negative but \sin \theta is positive. So, \theta lies in II quadrant. Therefore,

\operatorname{Argument} \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}

Therefore, the polar form of Z=-1+i is given by

\sqrt{2}\left[\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right]

(ii) \frac{1+3 i}{1-2 i}=\frac{1+3 i}{1-2 i} \times \frac{1+2 i}{1+2 i}

=\frac{1+2 i+3 i+6 i^{2}}{1^{2}-2^{2} i^{2}}

=\frac{1+5 i-6}{1+4} \quad\left[\because i^{2}=-1\right]

=\frac{-5+5 i}{5}=-1+i

Let Z=-1+i=r(\cos \theta+i \sin \theta)

Comparing the real and imaginary parts, we have

r \cos \theta=---(i)

r \sin \theta=1--(ii)

Squaring and adding equation (1) and (2), we have

r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=1+1

\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=2

\Rightarrow r^{2}=2 \quad \Rightarrow r=\sqrt{2}, \quad|Z|>0

Therefore, modulus =\sqrt{2}

Now, dividing equation (2) by (1), we have

\frac{r \sin \theta}{r \cos \theta}=\frac{1}{-1} \quad \Rightarrow \tan \theta=-1

From the equations (1), (2) and (3), it is clear that \cos \theta and \tan \theta are negative but \sin \theta is positive. So, \theta lies in Il quadrant. Therefore,

\text { Argument } \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}

Therefore, the polar form of Z=-1+i is given by

\sqrt{2}\left[\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right]

Solve each of the equation in Exercises 6 to 9.

Question 6: 3 x^{2}-4 x+\frac{20}{3}=0

Solution: Given that 3 x^{2}-4 x+\frac{20}{3}=0

The given quadratic equation is 3 x^{2}-4 x+\frac{20}{3}=0

\Rightarrow 9 x^{2}-12 x+20=0.

On comparing the given equation with a x^{2}+b x+c=0, we obtain a=9, b=-12, and c=20

Therefore, the discriminant of the given equation is given by

D=b^{2}-4 a c=(-12)^{2}-4 \times 9 \times 20

=144-720=-576

Therefore, the required solutions are

x=\frac{-b \pm \sqrt{D}}{2 a}

=\frac{-(-12) \pm \sqrt{-576}}{2 \times 9}

=\frac{12 \pm 24 \cdot \sqrt{-1}}{18}

=\frac{2 \pm 4 i}{3} \quad[\because \sqrt{-1}=i]

Question 7: x^{2}-2 x+\frac{3}{2}=0:

Solution : Given that x^{2}-2 x+\frac{3}{2}=0

The given quadratic equation is x^{2}-2 x+\frac{3}{2}=0

\Rightarrow 2 x^{2}-4 x+3=0.

On comparing the given equation with a x^{2}+b x+c=0, we obtain a=2, b=-4, and c=3

Therefore, the discriminant of the given equation is given by

D=b^{2}-4 a c

=(-4)^{2}-4 \times 2 \times 3

=16-24=-8

Therefore, the required solutions are

x=\frac{-b \pm \sqrt{D}}{2 a}

=\frac{-(-4) \pm \sqrt{-8}}{2 \times 2}

=\frac{4 \pm 2 \sqrt{2} \cdot \sqrt{-1}}{4}

=\frac{2 \pm \sqrt{2} i}{2} \quad[\because \sqrt{-1}=i]

Question 8:27 x^{2}-10 x+1=0

Solution : Given that 27 x^{2}-10 x+1=0

The given quadratic equation is 27 x^{2}-10 x+1=0.

On comparing the given equation with a x^{2}+b x+c=0, we obtain a=27, b=-10, and c=1

Therefore, the discriminant of the given equation is given by

D=b^{2}-4 a c=(-10)^{2}-4 \times 27 \times 1

=100-108=-8

Therefore, the required solutions are

x=\frac{-b \pm \sqrt{D}}{2 a}

=\frac{-(-10) \pm \sqrt{-8}}{2 \times 27}

=\frac{10 \pm 2 \sqrt{2} \cdot \sqrt{-1}}{54}

=\frac{5 \pm \sqrt{2} i}{27} \quad[\because \sqrt{-1}=i]

Question 9:  21 x^{2}-28 x+10=0

Solution : The given quadratic equation is 21 x^{2}-28 x+10=0.

On comparing the given equation with a x^{2}+b x+c=0, we obtain a=21, b=-28, and c=10

Therefore, the discriminant of the given equation is given by

D=b^{2}-4 a c

=(-28)^{2}-4 \times 21 \times 10

=784-840=-56

Therefore, the required solutions are

x=\frac{-b \pm \sqrt{D}}{2 a}

=\frac{-(-28) \pm \sqrt{-56}}{2 \times 21}

=\frac{28 \pm 2 \sqrt{14} \cdot \sqrt{-1}}{42}

=\frac{14 \pm \sqrt{14} i}{21} \quad[\because \sqrt{-1}=i]

Question 10: If z_{1}=2-i, z_{2}=1+i, find \left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|.

Solution : Since, \frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}

=\frac{2-i+1+i+1}{2-i-1-i+1}

=\frac{4}{2-2 i}

=\frac{2}{1-i} \times \frac{1+i}{1+i}

=\frac{2(1+i)}{1-i^{2}}

=\frac{2(1+i)}{2}=1+i

Therefore, \left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|=|1+i|

=\sqrt{1^{2}+1^{2}}=\sqrt{2}

Question 11: If a+i b=\frac{(x+i)^{2}}{2 x^{2}+1}, prove that a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}

Solution: Here, a+i b=\frac{(x+i)^{2}}{2 x^{2}+1}

\Rightarrow a+i b=\frac{x^{2}+i^{2}+2 x i}{2 x^{2}+1}

=\frac{x^{2}-1+i 2 x}{2 x^{2}+1}

=\frac{x^{2}-1}{2 x^{2}+1}+\frac{2 x}{2 x^{2}+1} i

a=\frac{x^{2}-1}{2 x^{2}+1} and b=\frac{2 x}{2 x^{2}+1}

Now, a^{2}+b^{2}=\left(\frac{x^{2}-1}{2 x^{2}+1}\right)^{2}+\left(\frac{2 x}{2 x^{2}+1}\right)^{2}

=\frac{x^{4}+1-2 x^{2}}{\left(2 x^{2}+1\right)^{2}}+\frac{4 x^{2}}{\left(2 x^{2}+1\right)^{2}}

=\frac{x^{4}+1-2 x^{2}+4 x^{2}}{\left(2 x^{2}+1\right)^{2}}

=\frac{x^{4}+1+2 x^{2}}{\left(2 x^{2}+1\right)^{2}}

a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}

Question 12: Let z_{1}=2-i, z_{2}=-2+i. Find

(i) \operatorname{Re}\left(\frac{z_{1} z_{2}}{\overline{z_{1}}}\right)

(ii) \operatorname{Im}\left(\frac{1}{z_{1} \overline{z_{1}}}\right)

Solution : (i) \operatorname{Re}\left(\frac{z_{1} z_{2}}{\overline{z_{1}}}\right)

\frac{z_{1} z_{2}}{\overline{z_{1}}}=\frac{(2-i)(-2+i)}{(2+i)}

=\frac{-4+2 i+2 i-i^{2}}{2+i}

=\frac{-4+4 i+1}{2+i} \quad\left[\because i^{2}=-1\right]

=\frac{-3+4 i}{2+i} \times \frac{2-i}{2-i}

=\frac{-6+3 i+8 i-4 i^{2}}{2^{2}-i^{2}}

=\frac{-6+11 i+4}{4+1} \quad\left[\because i^{2}=-1\right]

=\frac{-2+11 i}{5}=\frac{-2}{5}+\frac{11}{5} i

Therfore, \operatorname{Re}\left(\frac{z_{1} z_{2}}{\overline{z_{1}}}\right)

=\operatorname{Re}\left(\frac{-2}{5}+\frac{11}{5} i\right)=-\frac{2}{5}

(ii) \operatorname{Im}\left(\frac{1}{z_{1} \overline{z_{1}}}\right)

\frac{1}{z_{1} \overline{z_{1}}}=\frac{1}{(2-i)(2+i)}

=\frac{1}{2^{2}-i^{2}}=\frac{1}{4+1}

=\frac{1}{5} \quad\left[\because i^{2}=-1\right]

Therefore, \operatorname{Im}\left(\frac{1}{z_{1} \overline{z_{1}}}\right)

=\operatorname{Im}\left(\frac{1}{5}+0 i\right)=0

Question 13: Find the modulus and argument of the complex number \frac{1+2 i}{1-3 i}.

Solution : \frac{1+2 i}{1-3 i}=\frac{1+2 i}{1-3 i} \times \frac{1+3 i}{1+3 i}

=\frac{1+3 i+2 i+6 i^{2}}{1^{2}-3^{2} i^{2}}

=\frac{1+5 i-6}{1+9} \quad\left[\because i^{2}=-1\right]

\Rightarrow \frac{1+2 i}{1-3 i}

=\frac{-5+5 i}{10}

=-\frac{1}{2}+\frac{1}{2} i

Let Z=-\frac{1}{2}+\frac{1}{2} i=r(\cos \theta+i \sin \theta)

Comparing the real and imaginary parts, we have

r \cos \theta=-\frac{1}{2}--(i)

r \sin \theta=\frac{1}{2}--(ii)

Squaring and adding equation (1) and (2), we have

r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=\frac{1}{4}+\frac{1}{4}

\Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\frac{2}{4} \quad \Rightarrow r^{2}=\frac{1}{2}

\Rightarrow r=\frac{1}{\sqrt{2}} \quad[\because r=|Z|>0]

Therefore, modulus =\frac{1}{\sqrt{2}}

Now, dividing equation (2) by (1), we have

\frac{r \sin \theta}{r \cos \theta}=\frac{\frac{1}{2}}{-\frac{1}{2}} \quad \Rightarrow \tan \theta=-1

From the equations (1), (2) and (3), it is clear that \cos \theta and \tan \theta are negative but \sin \theta is positive. So, \theta lies in II quadrant. Therefore,

Argument = \pi - \frac{\pi}{4}

=\frac{3\pi}{4}

Question 14: Find the real numbers x and y if (x-i y)(3+5 i) is the conjugate of -6-24 i.

Solution : Given that: (x-i y)(3+5 i) is the conjugate of -6-24 i

\Rightarrow(x-i y)(3+5 i)=-6+24 i

\Rightarrow 3 x+x 5 i-3 y i-5 y i^{2}=-6+24 i

\Rightarrow 3 x+(5 x-3 y) i+5 y=-6+24 i \quad\left[\because i^{2}=-1\right]

\Rightarrow(3 x+5 y)+(5 x-3 y) i=-6+24 i

Comparing the real and imaginary parts, we have

3 x+5 y=-6--(i) and 5 x-3 y=24--(ii)

Form the equation (1), we have y=\frac{-6-3 x}{5}

Putting the value of y in equation (2), we get

5 x-3\left(\frac{-6-3 x}{5}\right)=24 \quad \Rightarrow 25 x+18+9 x=120

\Rightarrow 34 x=102 \quad \Rightarrow x=\frac{102}{34}=3

Putting the value of x in equation (1), we have

3 \times 3+5 y=-6

\Rightarrow 5 y=-6-9=-15

\Rightarrow y=-\frac{15}{5}=-3

Question 15: Find the modulus of \frac{1+i}{1-i}-\frac{1-i}{1+i}

Solution : Given that \frac{1+i}{1-i}-\frac{1-i}{1+i}

=\frac{(1+i)(1+i)-(1-i)(1-i)}{(1-i)(1+i)}

=\frac{1+i^{2}+2 i-\left(1+i^{2}-2 i\right)}{1-i^{2}}

=\frac{4 i}{1+1}=2 i \quad\left[\because i^{2}=-1\right]

Therefore, \left|\frac{1+i}{1-i}-\frac{1-i}{1+i}\right|

=|2 i|=|0+2 i|

=\sqrt{0^{2}+2^{2}}

=\sqrt{4}=2

Question 16: If (x+i y)^{3}=u+i v, then show that \frac{u}{x}+\frac{v}{y}=4\left(x^{2}-y^{2}\right).

Solution : Given that: (x+i y)^{3}=u+i v

\Rightarrow x^{3}+(i y)^{3}+3 x^{2}(i y)+3 x(i y)^{2}=u+i v

\Rightarrow x^{3}-i y^{3}+i 3 x^{2} y-3 x y^{2}=u+i v \quad\left[\because i^{2}=-1\right]

\Rightarrow\left(x^{3}-3 x y^{2}\right)+i\left(3 x^{2} y-y^{3}\right)=u+i v

Comparing the real and imaginary parts, we have

u=x^{3}-3 x y^{2} \quad and \quad v=3 x^{2} y-y^{3}

\Rightarrow \frac{u}{x}=x^{2}-3 y^{2} \quad and \quad \frac{v}{y}=3 x^{2}-y^{2}

\Rightarrow \frac{u}{x}+\frac{v}{y}=x^{2}-3 y^{2}+3 x^{2}-y^{2}

=4 x^{2}-4 y^{2}=4\left(x^{2}-y^{2}\right)

Question 17: If \alpha and \beta are different complex number with |\beta|=1, then find \left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|.

Solution : We know that \left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|^{2}

=\left(\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right) \overline{\left(\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right)}\quad \left[\because z \bar{z}=|z|^{2}\right]

=\left(\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right)\left(\frac{\bar{\beta}-\bar{\alpha}}{1-\alpha \bar{\beta}}\right)

=\frac{\beta \bar{\beta}-\bar{\alpha} \beta-\alpha \bar{\beta}+\alpha \bar{\alpha}}{1-\alpha \bar{\beta}-\bar{\alpha} \beta+\alpha \bar{\alpha} \beta \bar{\beta}}

=\frac{|\beta|^{2}-\bar{\alpha} \beta-\alpha \bar{\beta}+|\alpha|^{2}}{1-\alpha \bar{\beta}-\bar{\alpha} \beta+|\alpha|^{2}|\beta|^{2}} \quad\left[\because z \bar{z}=|z|^{2}\right]

=\frac{1-\bar{\alpha} \beta-\alpha \bar{\beta}+|\alpha|^{2}}{1-\alpha \bar{\beta}-\bar{\alpha} \beta+|\alpha|^{2}} \quad[\because|\beta|=1]

=1

\Rightarrow\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|^{2}=1

\Rightarrow\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|=1

Question 18: Find the number of non-zero integral solutions of the equation |1-i|^{x}=2^{x}.

Solution : Given that: |1-i|^{x}=2^{x}

\Rightarrow\left(\sqrt{1^{2}+1^{2}}\right)^{x}=2^{x}

\Rightarrow(\sqrt{2})^{x}=2^{x}

\Rightarrow 2^{\frac{x}{2}}=2^{x}

\Rightarrow \frac{x}{2}=x

\Rightarrow x=2 x

\Rightarrow x=0

Thus, 0 is the only integral solution of the given equation.

Therefore, the number of nonzero integral solutions of the given equation is 0 .

Question 19: If (a+i b)(c+i d)(e+i f)(g+i h)=A+i B, then show that \left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=A^{2}+B^{2}.

Solution : Given that: (a+i b)(c+i d)(e+i f)(g+i h)=A+i B

\Rightarrow|(a+i b)(c+i d)(e+i f)(g+i h)|=|A+i B|

\Rightarrow|a+i b \| c+i d||e+i f||g+i h|=|A+i B|

\quad\left[\because\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|\right]

\Rightarrow \sqrt{a^{2}+b^{2}} \cdot \sqrt{c^{2}+d^{2}} \cdot \sqrt{e^{2}+f^{2}} \cdot \sqrt{g^{2}+h^{2}}=\sqrt{A^{2}+B^{2}}

Squaring both sides, we have

\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=A^{2}+B^{2}

Question 20: If \left(\frac{1+i}{1-i}\right)^{m}=1, then find the least integral value of m.

Solution : Given that: \left(\frac{1+i}{1-i}\right)^{m}=1

\Rightarrow\left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^{m}=1

\Rightarrow\left(\frac{1+i+i+i^{2}}{1^{2}-i^{2}}\right)^{m}=1

\Rightarrow\left(\frac{1+i+i-1}{1+1}\right)^{m}=1 \quad\left[\because i^{2}=-1\right]

\Rightarrow\left(\frac{2 i}{2}\right)^{m}=1

\Rightarrow(i)^{m}=1

\Rightarrow m=4,8,12, \ldots

Therefore, the least integral value of m=4.

Exercise 5.1 complex no. ncert math solution class 11

Exercise 5.2 complex no. ncert math solution class 11

Exercise 5.3 complex no. ncert math solution class 11

Exercise 5.2 complex no. ncert math solution class 11

gmath.in

Leave a Comment