Class 12 determinants multiple choice question

Multiple choice (Determinants)

Class 12 determinants multiple choice question

Choose and write the correct option in the following question:(Class 12 determinants multiple choice question)

1.) \begin{vmatrix} x & 2\\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6\end{vmatrix}, then x is equal to

(a) 6                                   (b) ±6

(c) -6                                 (d) 0

Answer:(b)

2.) The area of a triangle with vertices (-3, 0),  (3, 0), and (0, k) is 9 sq. units. The value of k will be 

(a) 9                                   (b) 3

(c) -9                                   (d) 6

Answer (b)

3.) If f(x) = \begin{vmatrix} 0 & x-a & x-b \\ x+a & 0 & x-c \\x+b & x+c & 0\end{vmatrix}, then

(a) f(a) = 0                       (b) f(b) = 0

(c) f(0) = 0                        (d) f(1) = 0

Answer (c)

4.) If  \begin{vmatrix} 2 & 3 & 2 \\ x & x & x \\ 4 & 9 & 1\end{vmatrix}+3 = 0, then the value of  x is

(a) 3                                   (b) 0

(c) -1                                   (d) 1

Answer (c)

5.) If C_{ij} denotes the cofactor of element P_{ij} of the matrix \begin{vmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & 2 & 4\end{vmatrix}, then the value of C_{31},C_{23} is

(a) 5                                   (b) 24

(c) -24                                (d) -5

Answer (a)

6.) If x = -4 is a root of  \begin{vmatrix} x & 2 & 3 \\ 1 & x & 1 \\ 3 & 2 & x\end{vmatrix}=0, then the sum of the other rwo roots is

(a) 4                                   (b) -3

(c) 2                                     (d) 5

Answe (a)

7.) If for a matrix \begin{bmatrix} \alpha & -2 \\ -2  & \alpha \end{bmatrix},|A^3| = 125, then the value of α is

(a) ±3                                (b) -3

(c) ±1                                  (d) 1

Answer (a)

8.) If A = \begin{vmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2\end{vmatrix}, then the value of |adj A| is

(a) 64                              (b) 16

(c) 0                                 (d) -8

Answer (a)

9.) If A is square matrix of order 3, such that A(adj A) = 10I, then |adj A| is equal to

(a) 1                                 (b) 10

(c) 100                             (d) 101

Answer (c)

10.) If B.\begin{bmatrix}1 & -2 \\ 1 & 4\end{bmatrix} = \begin{bmatrix}6 & 0 \\ 0 & 6\end{bmatrix}

(a) \begin{bmatrix}4 & 2 \\ 1 & 1\end{bmatrix}

(b) \begin{bmatrix}4 & 2 \\ -1 & 1\end{bmatrix}

(c) \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}

(d) I

Answer (b)

11.) The sum of the products of elements of any row with the co-factors of corresponding elements equal to

(a) Cofactor sum                   (b) Value of the derminant

(c) 0                                         (d) Adjoint of matrix

Answer (b)

12.) The matrix \begin{bmatrix}5 & 10 & 3 \\ -2 & -4 & 6\\ -1 & -2 & b\end{bmatrix} is singular matrix, if the value of b is

(a) -3                                  (b) 3

(c) 0                                   (d) Any real number

Answe (d)

13.) If x, y, z are non zero real numbers, then the inverse of matrix \begin{bmatrix} x & 0 & 0\\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix} is

(a) \begin{bmatrix} x^{-1} & 0 & 0\\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix}

(b) xyz\begin{bmatrix} x^{-1} & 0 & 0\\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix}

(c) \frac{1}{xyz}\begin{bmatrix} x & 0 & 0\\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}

(d) \frac{1}{xyz}\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}

Answer (a)

14.) If A = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix} then the value of A^TA^{-1} is

(a) \begin{bmatrix} \cos 2x & -\sin 2x \\ \sin 2x & \cos 2x\end{bmatrix}

(b) \begin{bmatrix} \cos x & \sin x \\ 1 & 0\end{bmatrix}

(c) A’

(d) Zero matrix

Answer (a)

15.) The value of (A^{-1})^T is

(a) (A^T)^{-1}            (b) A^{-1}

(c) I                                     (d) A^T

Answer (a)

16.) If A is an invertible matrix of order 2, then (detA^{-1}) is equal to

(a) det A                            (b) \frac{1}{det A}

(c) 1                                    (d) 0

Answer (b)

17.) If A is singular matrix, then A(adj A) is

(a) Null matrix                  (b) Scalar matrix

(c) Identity matrix            (d) None of these

Answer (a)

18.) Using matrix method to solve the following system of equations: 5x – 7y = 2, 7x – 5y = 3, value of x, y is

(a) x = 11/24, y = 1/24           (b) x = -11/24, y = 1/24

(c) x = 1, y = 1                           (d) x = 10/24, y = 1/24

Answer (a)

19.) If A is square matrix of order 3×3 such that |A| = 2, then the value of |adj(adj A)| is

(a) -16                    (b) 16

(c) 0                       (d) 2

Answer (b)

20.) If A and B are invertible matrices, then which of the following is NOT correct.

(a) adj A = |A|.A^{-1}              (b) det(A^{-1}) = [det (A)]^{-1}

(c) (AB)^{-1} = B^{-1}A^{-1}    (d) (A+B)^{-1} = B^{-1}+A^{-1}

Answer (d)

Class 12 relation and functions multiple choice

class 12 inverse trigonometric functions multiple choice

Class 12 matrix multiple choice question

Leave a Comment