Class 12 ncert solution math exercise 2.2

         EXERCISE 2.2

Prove the following:(Class 12 ncert solution math exercise 2.2)

Question 1: Prove 3 \sin ^{-1} x=\sin ^{-1}\left(3 x-4 x^{3}\right), x \in\left[-\frac{1}{2}, \frac{1}{2}\right].

Solution: Let x=\sin \theta x=\sin \theta

Hence, \sin ^{-1}(x)=\theta \sin ^{-1}(x)=\theta

Now,

RHS =\sin ^{-1}\left(3 x-4 x^{3}\right)

=\sin ^{-1}\left(3 \sin \theta-4 \sin ^{3} \theta\right)

=\sin ^{-1}(\sin 3 \theta)

=3 \theta

=3 \sin ^{-1} x

=L H S

Question 2: Prove 3 \cos ^{-1} x=\cos ^{-1}\left(4 x^{3}-3 x\right), x \in\left[\frac{1}{2}, 1\right].

Solution: Let x=\cos \theta

Hence, \cos ^{-1}(x)=\theta

Now,

RHS =\cos ^{-1}\left(4 x^{3}-3 x\right)

=\cos ^{-1}\left(4 \cos ^{3} \theta-3 \cos \theta\right)

=\cos ^{-1}(\cos 3 \theta)

=3 \theta

=3 \cos ^{-1} x

=L H S

Question 3: Prove \tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24}=\tan ^{-1} \frac{1}{2}.

Solution: Since we know that \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}

Now,

L H S =\tan ^{-1} \frac{2}{11}+\tan ^{-1} \frac{7}{24}

=\tan ^{-1} \frac{\frac{2}{11}+\frac{7}{24}}{1-\frac{2}{11} \cdot \frac{7}{24}}

=\tan ^{-1}\left(\frac{\frac{48+77}{264}}{\frac{264-14}{264}}\right)

=\tan ^{-1}\left(\frac{125}{250}\right)

=\tan ^{-1}\left(\frac{1}{2}\right)

=R H S

Question 4:Prove 2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{31}{17}.

Solution: Since we know that

2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^{2}}

\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}
Now,

L H S =2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}

=\tan ^{-1} \frac{2 \times \frac{1}{2}}{1-\left(\frac{1}{2}\right)^{2}}+\tan ^{-1} \frac{1}{7}

=\tan ^{-1}\left(\frac{4}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right)

=\tan ^{-1}\left(\frac{\frac{4}{3}+\frac{1}{7}}{1-\frac{4}{3} \cdot \frac{1}{7}}\right)

=\tan ^{-1}\left(\frac{\frac{28+3}{21}}{21-4}\right)

=\tan ^{-1}\left(\frac{31}{17}\right)

=R H S

Question 5: Write the function in the simplest form: \tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x}, x \neq 0

Solution: Let x=\tan \theta \Rightarrow \theta=\tan ^{-1} x

Hence,

\tan ^{-1} \frac{\sqrt{1+x^{2}}-1}{x} =\tan ^{-1}\left(\frac{\sqrt{1+\tan ^{2} \theta}-1}{\tan \theta}\right)

=\tan ^{-1}\left(\frac{\sec \theta-1}{\tan \theta}\right)

=\tan ^{-1}\left(\frac{1-\cos \theta}{\sin \theta}\right)

=\tan ^{-1}\left(\frac{2 \sin ^{2} \frac{\theta}{2}}{2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}\right)

=\tan ^{-1}\left(\tan \frac{\theta}{2}\right)

=\frac{\theta}{2}

=\frac{1}{2} \tan ^{-1} x

Question 6: Write the function in the simplest form: \tan ^{-1} \frac{1}{\sqrt{x^{2}-1}},|x|>1

Solution: Let x=\operatorname{cosec} \theta \Rightarrow \theta=\operatorname{cosec}^{-1} x

Hence,

\tan ^{-1} \frac{1}{\sqrt{x^{2}-1}} =\tan ^{-1} \frac{1}{\sqrt{\operatorname{cosec}^{2} \theta-1}}

=\tan ^{-1}\left(\frac{1}{\cot \theta}\right)

=\tan ^{-1}(\tan \theta)

=\theta

=\operatorname{cosec}{ }^{-1} x

=\frac{\pi}{2}-\sec ^{-1} x

Question 7: Write the function in the simplest form: \tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right), 0<x<\pi

Solution: Since, 1-\cos x=2 \sin ^{2} \frac{x}{2}

1+\cos x=2 \cos ^{2} \frac{x}{2}

Hence,

\tan ^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right) =\tan ^{-1}\left(\sqrt{\frac{2 \sin ^{2} \frac{x}{2}}{2 \cos ^{2} \frac{x}{2}}}\right)

=\tan ^{-1}\left(\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}\right)

=\tan ^{-1}\left(\tan \frac{x}{2}\right)

=\frac{x}{2}

Question 8: Write the function in the simplest form: \tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right), 0<x<\pi

Solution: \tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right) =\tan ^{-1}\left(\frac{\frac{\cos x-\sin x}{\cos x}}{\frac{\cos x+\sin x}{\cos x}}\right)

=\tan ^{-1}\left(\frac{1-\frac{\sin x}{\cos x}}{1+\frac{\sin x}{\cos x}}\right)

=\tan ^{-1}\left(\frac{1-\tan x}{1+\tan x}\right)

=\tan ^{-1}(1)-\tan { }^{-1}(\tan x)

=\frac{\pi}{4}-x

Question 9: Write the function in the simplest form: \tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}},|x|<a

Solution: Let x=a \sin \theta \Rightarrow \theta=\sin ^{-1}\left(\frac{x}{a}\right)

Hence,

\tan ^{-1} \frac{x}{\sqrt{a^{2}-x^{2}}} =\tan ^{-1}\left(\frac{a \sin \theta}{\sqrt{a^{2}-a^{2} \sin ^{2} \theta}}\right)

=\tan ^{-1}\left(\frac{a \sin \theta}{a \sqrt{1-\sin ^{2} \theta}}\right)

=\tan ^{-1}\left(\frac{a \sin \theta}{a \cos \theta}\right)

=\tan ^{-1}(\tan \theta)

=\theta

=\sin ^{-1} \frac{x}{a}

Question 10: Write the function in the simplest form: \tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right), a>0 ; \frac{-a}{\sqrt{3}} \leq x \leq \frac{a}{\sqrt{3}}

Solution: Let x=a \tan \theta \Rightarrow \theta=\tan ^{-1}\left(\frac{x}{a}\right)

Hence,

\tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a^{3}-3 a x^{2}}\right) =\tan ^{-1}\left(\frac{3 a^{2} \cdot a \tan \theta-a^{3} \tan ^{3} \theta}{a^{3}-3 a \cdot a^{2} \tan ^{2} \theta}\right)

=\tan ^{-1}\left(\frac{3 a^{3} \tan \theta-a^{3} \tan ^{3} \theta}{a^{3}-3 a^{3} \tan ^{2} \theta}\right)

=\tan ^{-1}(\tan 3 \theta)

=3 \theta

=3 \tan ^{-1} \frac{x}{a}

Question 11: Write the function in the simplest form: \tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right]

Solution: Let \sin ^{-1} \frac{1}{2}=x

Hence,

Therefore,

\sin x =\frac{1}{2}

=\sin \left(\frac{\pi}{6}\right)

x =\frac{\pi}{6}

\sin ^{-1}\left(\frac{1}{2}\right) =\frac{\pi}{6}

\tan -1\left[2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right] =\tan ^{-1}\left[2 \cos \left(2 \times \frac{\pi}{6}\right)\right]

=\tan ^{-1}\left[2 \cos \frac{\pi}{3}\right]

=\tan ^{-1}\left[2 \times \frac{1}{2}\right]

=\tan ^{-1}[1]

=\frac{\pi}{4}

Question 12: Find the value of \cot \left(\tan ^{-1} a+\cot ^{-1} a\right)

Solution: Since { }^{\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}}

Hence,

\cot \left(\tan ^{-1} a+\cot ^{-1} a\right) =\cot \left(\frac{\pi}{2}\right)

=0

Question 13: Find the value of \tan \frac{1}{2}\left(\sin ^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right),|x|<1, y>0 and x y<1.

Solution: Let x=\tan \theta \Rightarrow \theta=\tan ^{-1} x

Hence,

\sin ^{-1} \frac{2 x}{1+x^{2}} =\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)

=\sin ^{-1}(\sin 2 \theta)

=2 \theta

=2 \tan ^{-1} x

Now, let y=\tan \phi \Rightarrow \phi=\tan ^{-1} y

Hence,

Therefore,

\cos ^{-1} \frac{1-y^{2}}{1+y^{2}} =\cos ^{-1}\left(\frac{1-\tan ^{2} \phi}{1+\tan ^{2} \phi}\right)

=\cos ^{-1}(\cos 2 \phi)

=2 \phi

=2 \tan ^{-1} y

\tan \frac{1}{2}\left(\sin ^{-1} \frac{2 x}{1+x^{2}}+\cos ^{-1} \frac{1-y^{2}}{1+y^{2}}\right) =\tan \frac{1}{2}\left(2 \tan ^{-1} x+2 \tan ^{-1} y\right)

=\tan \left(\tan ^{-1} x+\tan ^{-1} y\right)

=\tan \left[\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\right]

=\left(\frac{x+y}{1-x y}\right)

Question 14: If \sin \left(\sin ^{-1} \frac{1}{5}+\cos ^{-1} x\right)=1, find the value of x.

Solution: It is given that \sin \left(\sin ^{-1} \frac{1}{5}+\cos ^{-1} x\right)=1
\Rightarrow \sin^{-1}\frac{1}{5}+\cos^{-1}x = \sin^{-1}1

\Rightarrow \sin^{-1}\frac{1}{5}+\cos^{-1}x = \frac{\pi}{2}

\Rightarrow \cos^{-1}x =\frac{\pi}{2}-\sin^{-1}\frac{1}{5}

\Rightarrow\cos^{-1}x= \cos^{-1}\frac{1}{5}

\Rightarrow x = \frac{1}{5}

Question 15: If \tan ^{-1} \frac{x-1}{x-2}+\tan ^{-1} \frac{x+1}{x-1}=\frac{\pi}{4}, find the value of x.

Solution: It is given that \tan ^{-1} \frac{x-1}{x-2}+\tan ^{-1} \frac{x+1}{x-1}=\frac{\pi}{4}

Since \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)

Therefore,

\Rightarrow \tan ^{-1}\left[\frac{\frac{x-1}{x-2}+\frac{x+1}{x+2}}{1-\left(\frac{x-1}{x-2}\right)\left(\frac{x+1}{x+2}\right)}\right]=\frac{\pi}{4}

\Rightarrow \tan ^{-1}\left[\frac{(x-1)(x+2)+(x+1)(x-2)}{(x+2)(x-2)-(x-1)(x+1)}\right]=\frac{\pi}{4}

\Rightarrow \tan ^{-1}\left[\frac{x^{2}+x-2+x^{2}-x-2}{x^{2}-4-x^{2}+1}\right]=\frac{\pi}{4}

\Rightarrow \tan ^{-1}\left[\frac{2 x^{2}-4}{-3}\right]=\frac{\pi}{4}

\Rightarrow \tan \left[\tan ^{-1} \frac{4-2 x^{2}}{3}\right]=\tan \frac{\pi}{4}

\Rightarrow \frac{4-2 x^{2}}{3}=1

\Rightarrow 4-2 x^{2}=3

\Rightarrow 2 x^{2}=1

\Rightarrow x^{2}=\frac{1}{2}

\Rightarrow x=\pm \frac{1}{\sqrt{2}}

Question 16: Find the value of \sin ^{-1}\left(\sin \frac{2 \pi}{3}\right).

Solution: Since, \sin \sin \quad(\not \infty-)

Therefore,

\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right) =\sin ^{-1}\left[\sin \left(\pi-\frac{2 \pi}{3}\right)\right]

=\sin ^{-1}\left(\sin \frac{\pi}{3}\right)

=\frac{\pi}{3}

Question 17: Find the value of \tan ^{-1}\left(\tan \frac{3 \pi}{4}\right).

Solution: \tan ^{-1}\left(\tan \frac{3 \pi}{4}\right) =\tan ^{-1}\left[-\tan \left(-\frac{3 \pi}{4}\right)\right]

=\tan ^{-1}\left[-\tan \left(\pi-\frac{\pi}{4}\right)\right]

=\tan ^{-1}\left[-\tan \left(\frac{\pi}{4}\right)\right]

=\tan ^{-1}\left[\tan \left(-\frac{\pi}{4}\right)\right]

=\left(-\frac{\pi}{4}\right)

Question 18: Find the value of \tan \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{3}{2}\right).

Solution: Let \sin ^{-1} \frac{3}{5}=x \Rightarrow \sin x=\frac{3}{5}

Then,

Therefore,

\Rightarrow \cos x=\sqrt{1-\sin ^{2} x}=\frac{4}{5}

\Rightarrow \sec x=\frac{5}{4}

Now,

\tan x =\sqrt{\sec ^{2} x-1}

=\sqrt{\frac{25}{16}-1}

=\frac{3}{4}

x =\tan ^{-1} \frac{3}{4}

\sin ^{-1} \frac{3}{5} =\tan ^{-1} \frac{3}{4}

\cot ^{-1} \frac{3}{2}=\tan ^{-1} \frac{2}{3}

Thus, by using (1) and (2)

\tan \left(\sin ^{-1} \frac{3}{5}+\cot ^{-1} \frac{2}{3}\right) =\tan \left(\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{2}{3}\right)

=\tan \left[\tan ^{-1} \frac{\frac{3}{4}+\frac{2}{3}}{1-\frac{3}{4} \cdot \frac{2}{3}}\right]

=\tan \left(\tan ^{-1} \frac{17}{6}\right)

=\frac{17}{6}

Question 19: \cos ^{-1}\left(\cos \frac{7 \pi}{6}\right) is equal to

(A) \frac{7 \pi}{6}

(B) \frac{5 \pi}{6}

(C) \frac{\pi}{3}

(D) \frac{\pi}{6}

Solution: \cos ^{-1}\left(\cos \frac{7 \pi}{6}\right) =\cos ^{-1}\left(\cos \frac{-7 \pi}{6}\right)

=\cos ^{-1}\left[\cos \left(2 \pi-\frac{7 \pi}{6}\right)\right]

=\cos ^{-1}\left[\cos \left(\frac{5 \pi}{6}\right)\right]

=\frac{5 \pi}{6}

Thus, the correct option is B.

Question 20: \sin \left(\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right) is equal to

(A) \frac{1}{2}

(B) \frac{1}{3}

(C) \frac{1}{4}

(D) 1

Solution: Let \sin ^{-1}\left(-\frac{1}{2}\right)=x

Hence,

\sin x =-\frac{1}{2}

=-\sin \frac{\pi}{6}

=\sin \left(-\frac{\pi}{6}\right)

x =-\frac{\pi}{6}

Since, Range of principal value of \sin ^{-1}(x)=\left[\frac{-\pi}{2}, \frac{\pi}{2}\right].

Therefore,

Then,

\sin ^{-1}\left(-\frac{1}{2}\right)=-\frac{\pi}{6}

\sin \left(\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right) =\sin \left(\frac{\pi}{3}+\frac{\pi}{6}\right)

=\sin \left(\frac{\pi}{2}\right)

=1

Thus, the correct option is D.

Question 21: Find the values of \tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3}) is equal to

(A) \pi

(B) -\frac{\pi}{2}

(C) 0

(D) 2 \sqrt{3}

Solution: Let \tan ^{-1} \sqrt{3}=x

Hence,

\tan x=\sqrt{3}=\tan \frac{\pi}{3} \text {, where } \frac{\pi}{3} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)

Therefore, \tan ^{-1} \sqrt{3}=\frac{\pi}{3}

Now, let \cot ^{-1}(-\sqrt{3})=y

Hence,

\cot y =(-\sqrt{3})

=-\cot \left(\frac{\pi}{6}\right)

=\cot \left(\pi-\frac{\pi}{6}\right)

=\cot \left(\frac{5 \pi}{6}\right)

Since, Range of principal value of \cot ^{-1} x=(0, \pi)

Therefore,

Then,

\cot ^{-1}(-\sqrt{3})=\frac{5 \pi}{6}

\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3}) =\frac{\pi}{3}-\frac{5 \pi}{6}

=-\frac{\pi}{2}

Thus, the correct option is B.


 

class 12 inverse trigonometric functions multiple choice

Case study inverse trigonometry 2
Two men on either side of a temple 30 metres high observes

Leave a Comment