Ex 7.11 integration ncert maths solution class 12

Exercise 7.11

By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.(Ex 7.11 integration ncert maths solution class 12)

Ex 7.11 integration ncert maths solution class 12

Question 1: \int_0^{\frac{\pi}{2}} \cos ^2 x d x

Solution : Let I=\int_0^{\frac{\pi}{2}} \cos ^2 x d x

I=\int_0^{\frac{\pi}{2}} \cos ^2\left(\frac{\pi}{2}-x\right) d x \quad\left[\text { Using property: } \int_0^a f(x) d x=\int_0^a f(a-x) d x\right]

I=\int_0^{\frac{\pi}{2}} \sin ^2 x d x

Adding (1) and (2), we have

2 I=\int_0^{\frac{\pi}{2}}\left(\sin ^2 x+\cos ^2 x\right) d x

2 I=\int_0^{\frac{\pi}{2}} 1 d x

\Rightarrow 2 I=[x]_0^{\frac{\pi}{2}}

\Rightarrow 2 I=\frac{\pi}{2}

\Rightarrow I=\frac{\pi}{4}

Question 2: \int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x

Solution: Let I=\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x

\Rightarrow I=\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}}{\sqrt{\sin \left(\frac{\pi}{2}-x\right)}+\sqrt{\cos \left(\frac{\pi}{2}-x\right)}} d x \quad\left[\text { Using property: } \int_0^a f(x) d x=\int_0^a f(a-x) d x\right]

I=\int_0^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}} d x

Adding (1) and (2), we have

2 I=\int_0^{\frac{\pi}{2}}\left(\frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}+\frac{\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}}\right) d x

\Rightarrow 2 I=\int_0^{\frac{\pi}{2}}\left(\frac{\sqrt{\sin x}+\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}}\right) d x

\Rightarrow 2 I=\int_0^{\frac{\pi}{2}} 1 d x

\Rightarrow 2 I=[x]_0^{\frac{\pi}{2}}

\Rightarrow 2 I=\frac{\pi}{2}

\Rightarrow I=\frac{\pi}{4}

Question 3: \int_0^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x

Solution:Let $I=\int_0^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x–(i)$

=\int_0^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)}{\sin ^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)+\cos ^{\frac{3}{2}}\left(\frac{\pi}{2}-x\right)} d x \quad\left[\text { Using property: } \int_0^a f(x) d x=\int_0^a f(a-x) d x\right]

I=\int_0^{\frac{\pi}{2}} \frac{\cos ^{\frac{3}{2}} x}{\cos ^{\frac{3}{2}} x+\sin ^{\frac{3}{2}} x} d x--(ii)

Adding (1) and (2), we have

2 I=\int_0^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} d x \Rightarrow 2 I=\int_0^{\frac{\pi}{2}} 1 d x

\Rightarrow \quad I=[x]_0^{\frac{\pi}{2}} \Rightarrow 2 I=\frac{\pi}{2} \Rightarrow I=\frac{\pi}{4}

Question4: \int_0^{\frac{\pi}{2}} \frac{\cos ^5 x d x}{\sin ^5 x+\cos ^5 x} d x

Solution: Let I=\int_0^{\frac{\pi}{2}} \frac{\cos ^5 x d x}{\sin ^5 x+\cos ^5 x} d x---(i)

=\int_0^{\frac{\pi}{2}} \frac{\cos ^5\left(\frac{\pi}{2}-x\right) d x}{\sin ^5\left(\frac{\pi}{2}-x\right)+\cos ^5\left(\frac{\pi}{2}-x\right)} d x \quad\left[\text { Using property: } \int_0^a f(x) d x=\int_0^a f(a-x) d x\right]

I=\int_0^{\frac{\pi}{2}} \frac{\sin ^5 x d x}{\cos ^5 x+\sin ^5 x} d x--(ii)

2 I=\int_0^{\frac{\pi}{2}} \frac{\sin ^5 x+\cos ^5 x}{\cos ^5 x+\sin ^5 x} d x

\Rightarrow 2 I=\int_0^{\frac{\pi}{2}} 1 d x

\Rightarrow 2 I=[x]_0^{\frac{\pi}{2}}

\Rightarrow 2 I=\frac{\pi}{2}

\Rightarrow I=\frac{\pi}{4}

Question 5: \int_{-5}^5|x+2| d x

Solution: Let I=\int_{-5}^5|x+2| d x--(i)

|x+2|=\begin{cases} -(x+2) & x<-2 \\ (x+2) & x\geq -2\end{cases}

I=\int_{-5}^{-2}-(x+2) d x+\int_{-2}^5(x+2) d x

\left[\text { Using property: } \int_a^b f(x)=\int_a^e f(x)+\int_e^b f(x)\right]

I=-\left[\frac{x^2}{2}+2 x\right]_{-5}^{-2}+\left[\frac{x^2}{2}+2 x\right]_{-2}^5

=-\left[\frac{(-2)^2}{2}+2(-2)-\frac{(-5)^2}{2}-2(-5)\right]+\left[\frac{(5)^2}{2}+2(5)-\frac{(2)^2}{2}+2(2)\right]

I=-\left[2-4-\frac{25}{2}+10\right]+\left[\frac{25}{2}+10-2+4\right]

=-2+4+\frac{25}{2}-10+\frac{25}{2}+10-2+4

=29

Question 6: \int_2^8|x-5| d x

Solution: Let I=\int_2^8|x-5| d x

|x-5|=\begin{cases} -(x-5) & x<5 \\ (x-5) & x\geq -5\end{cases}

I=\int_2^5-(x-5) d x+\int_2^8(x-5) d x

\left[\text { Using property: } \int_a^b f(x)=\int_a^e f(x)+\int_e^b f(x)\right]

I=-\left[\frac{x^2}{2}-5 x\right]_2^5+\left[\frac{x^2}{2}-5 x\right]_5^8

I=-\left[\frac{25}{2}-25-2+10\right]+\left[32-40-\frac{25}{2}+25\right]=9

Question 7: \int_0^1 x(1-x)^n d x

Solution: Let I=\int_0^1 x(1-x)^n d x

=\int_0^1(1-x)(1-(1-x))^n d x

\left[\text { Using property: } \int_0^a f(x) d x=\int_0^a f(a-x) d x\right]

=\int_0^1(1-x)(x)^n d x=\int_0^1\left(x^n-x^{n+1}\right) d x=\left[\frac{x^{n+1}}{n+1}-\frac{x^{n+2}}{n+2}\right]_0^1

=\left[\frac{1}{n+1}-\frac{1}{n+2}\right]

=\frac{(n+2)-(n+1)}{(n+1)(n+2)}=\frac{1}{(n+1)(n+2)}

Question 8: \int_0^{\frac{\pi}{4}} \log (1+\tan x) d x

Solution: Let I=\int_0^{\frac{\pi}{4}} \log (1+\tan x) d x

=\int_0^{\frac{\pi}{4}} \log \left[1+\tan \left(\frac{\pi}{4}-x\right)\right] d x

\left[\right.$ Using property: $\left.\int_0^a f(x) d x=\int_0^a f(a-x) d x\right]

I=\int_0^{\frac{\pi}{4}} \log \left[1+\frac{\tan \frac{\pi}{4}-\tan x}{1+\tan \frac{\pi}{4} \tan x}\right] d x

I=\int_0^{\frac{\pi}{4}} \log \left[1+\frac{1-\tan x}{1+\tan x}\right] d x

I=\int_0^{\frac{\pi}{4}} \log \frac{2}{(1+\tan x)} d x

=\int_0^{\frac{\pi}{4}} \log 2 d x-\int_0^{\frac{\pi}{4}} \log (1+\tan x) d x

\Rightarrow I=\int_0^{\frac{\pi}{4}} \log 2 d x-I

2 I=[x \log 2]_0^{\frac{\pi}{4}}

\Rightarrow 2 I=\frac{\pi}{4} \log 2

\Rightarrow I=\frac{\pi}{8} \log 2

Question 9: \int_0^2 x \sqrt{2-x} d x

Soltuion: Let I=\int_0^2(2-x) \sqrt{x} d x

\left[\text { Using property: } \int_0^a f(x) d x=\int_0^a f(a-x) d x\right]

=\int_0^2\left[2 x^{\frac{1}{2}}-x^{\frac{3}{2}}\right] d x

=\left[2\left(\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right)-\left(\frac{x^{\frac{5}{2}}}{\frac{5}{2}}\right)\right]_0^1

=\left[\frac{4}{3} x^{\frac{3}{2}}-\frac{2}{5} x^{\frac{5}{2}}\right]_0^1

=\frac{4}{3}(2)^{\frac{3}{2}}-\frac{2}{5}(2)^{\frac{5}{2}}

=\frac{4 \times 2 \sqrt{2}}{3}-\frac{2}{5} \times 4 \sqrt{2}

=\frac{8 \sqrt{2}}{3}-\frac{8 \sqrt{2}}{5}

=\frac{40 \sqrt{2}-24 \sqrt{2}}{15}=\frac{16 \sqrt{2}}{15}

Question 10: \int_0^{\frac{\pi}{2}}(2 \log \sin x-\log \sin 2 x) d x

Solution: Let I=\int_0^{\frac{\pi}{2}}(2 \log \sin x-\log \sin 2 x) d x

=\int_0^{\frac{\pi}{2}}\{(2 \log \sin x-\log (2 \sin x \cos x)\} d x

=\int_0^{\frac{\pi}{2}}\{(2 \log \sin x-\log \sin x-\log \cos x-\log 2)\} d x

I=\int_0^{\frac{\pi}{2}}\{(\log \sin x-\log \cos x-\log 2)\} d x--(i)

Using property, \left\{\int_0^a f(x) d x=\int_0^a f(a-x) d x\right\}, we have

I=\int_0^{\frac{\pi}{2}}\{(\log \cos x-\log \sin x-\log 2)\} d x

Adding (1) and (2), we have

2 I=\int_0^{\frac{\pi}{2}}(-\log 2-\log 2) d x

\Rightarrow 2 I=-2 \log 2 \int_0^{\frac{\pi}{2}} 1 d x

\Rightarrow I=-\log 2\left[\frac{\pi}{2}\right]

\Rightarrow I=\frac{\pi}{2}(-\log 2)

\Rightarrow I=-\frac{\pi}{2} \log 2

Question 11: \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^2 x d x

Solution: Let I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^2 x d x

Here, \sin ^2(-x)=(\sin (-x))^2=\sin ^2 x, therefore, \sin ^2 x is an even function.

We know that if f(x) is an even function, then \int_{-a}^a f(x) d x=2 \int_0^a f(x) d x

I=2 \int_0^{\frac{\pi}{2}} \sin ^2 x d x

=2 \int_0^{\frac{\pi}{2}} \frac{1-\cos 2 x}{2} d x

=\int_0^{\frac{\pi}{2}}(1-\cos 2 x) d x

=\left[x-\frac{\sin 2 x}{2}\right]_0^{\frac{\pi}{2}}

=\frac{\pi}{2}-0=\frac{\pi}{2}

Question 12: \int_0^\pi \frac{x d x}{1+\sin x}

Solution:- Let I=\int_0^\pi \frac{x d x}{1+\sin x}

I=\int_0^\pi \frac{(\pi-x) d x}{1+\sin (\pi-x)} \quad \ldots(1)

I=\int_0^\pi \frac{(\pi-x) d x}{1+\sin x}--(ii)

\text { Adding } \left.\quad[1) \operatorname{and}(2), \text { we have property: } \int_0^a f(x) d x=\int_0^a f(a-x) d x\right]

2 I=\int_0^\pi \frac{\pi d x}{1+\sin x}

\Rightarrow 2 I=\pi \int_0^\pi \frac{(1-\sin x) d x}{(1+\sin x)(1-\sin x)}

\Rightarrow 2 I=\pi \int_0^\pi \frac{1-\sin x}{\cos ^2 x} d x

2 I=\pi \int_0^\pi\left\{\sec ^2 x-\tan x \sec x\right\} d x

\Rightarrow 2 I=\pi[\tan x \sec x]_0^\pi

\Rightarrow 2 I=\pi[2] \Rightarrow I=\pi

Question 13: \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^7 x d x

Solution: Let I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^7 x d x

Here, \sin ^7(-x)=[(\sin (-x))]^7=(-\sin x)^2=-\sin ^7 x, therefore, \sin ^7 x is an odd function.

We know that if f(x) is an even function, then \int_{-a}^a f(x) d x=0

Therefore, I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^7 x d x=0

Question 14: \int_0^{2 \pi} \cos ^5 x d x

Solution: Let I=\int_0^{2 \pi} \cos ^5 x d x--(i)

We know that,

\int_0^{2 a} f(x) d x= \begin{cases}2 \int_0^a f(x) d x & \text { if } f(2 a-x)=f(x) \\ 0 & \text { if } f(2 a-x)=-f(x)\end{cases}

Here, \quad \cos ^5(2 \pi-x)=\cos ^5 x

\therefore I=2 \int_0^\pi \cos ^5 x d x

Now, \quad \cos ^5(\pi-x)=-\cos ^5 x

\therefore I=2(0)=0

Question 15: \int_0^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\sin x \cos x} d x

Solution : Let I=\int_0^{\frac{\pi}{2}} \frac{\sin x-\cos x}{1+\sin x \cos x} d x--(i)

\left[\text { Using property: } \int_0^a f(x) d x=\int_0^a f(a-x) d x\right]

=\int_0^{\frac{\pi}{2}} \frac{\sin \left(\frac{\pi}{2}-x\right)-\cos \left(\frac{\pi}{2}-x\right)}{1+\sin \left(\frac{\pi}{2}-x\right) \cos \left(\frac{\pi}{2}-x\right)} d x \quad \text {.. (2) }

=\int_0^{\frac{\pi}{2}} \frac{\cos x-\sin x}{1+\sin x \cos x} d x

Adding (1) and (2), we have

2 I=\int_0^{\frac{\pi}{2}} \frac{0}{1+\sin x \cos x} d x=0

\Rightarrow I=0

Question 16: \int_0^\pi \log (1+\cos x) d x

Solution : Let I=\int_0^\pi \log (1+\cos x) d x--(i)

I =\int_0^\pi \log (1+\cos (\pi-x)) d x

\left[\text { Using property: } \int_0^a f(x) d x=\int_0^a f(a-x) d x\right]

I =\int_0^\pi \log (1-\cos x) d x --ii

Adding (1) and (2), we have

2 I=\int_0^\pi\{\log (1+\cos x)+\log (1-\cos x)\} d x

=\int_0^\pi \log \left(1-\cos ^2 x\right) d x

2 I=\int_0^\pi \log \left(\sin ^2 x\right) d x=2 \int_0^\pi \log (\sin x) d x

\Rightarrow I=\int_0^\pi \log (\sin x) d x

We know that,

\int_0^{2 a} f(x) d x= \begin{cases}2 \int_0^a f(x) d x & \text { if } f(2 a-x)=f(x) \\ 0 & \text { if } f(2 a-x)=-f(x)\end{cases}

Here, \sin (\pi-x)=\sin x

I=2 \int_0^{\frac{\pi}{2}} \log \sin x d x--(iii)

I=\int_0^{\frac{\pi}{2}} \log \sin \left(\frac{\pi}{2}-x\right) d x

=2 \int_0^{\frac{\pi}{2}} \log \cos x d x--(iv)

Adding (4) and (5), we have

2 I=2 \int_0^{\frac{\pi}{2}}(\log \sin x+\log \cos x) d x

\Rightarrow I=\int_0^{\frac{\pi}{2}}(\log \sin x+\log \cos x+\log 2-\log 2) d x

\Rightarrow I=\int_0^{\frac{\pi}{2}}(\log 2 \sin x \cos x-\log 2) d x

\Rightarrow I=\int_0^{\frac{\pi}{2}} \log 2 \sin x \cos x d x-\int_0^{\frac{\pi}{2}} \log 2 d x

\Rightarrow I=\int_0^{\frac{\pi}{2}} \log \sin 2 x d x-\log 2[x] \frac{\pi}{2}=\int_0^{\frac{\pi}{2}} \log \sin 2 x d x-\frac{\pi}{2} \log 2

Let 2 x=t \quad \Rightarrow 2 d x=d t

Question 17: </span></span>\int_0^a \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x

Solution : Let I=\int_0^a \frac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}} d x--(i)

\left[\right. Using property: \left.\int_0^a f(x) d x=\int_0^a f(a-x) d x\right], we have

I=\int_0^a \frac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}} d x--(ii)

Adding (1) and (2), we have

2 I=\int_0^a \frac{\sqrt{x}+\sqrt{a-x}}{\sqrt{x}+\sqrt{a-x}} d x

\Rightarrow 2 I=\int_0^a 1 d x

\Rightarrow 2 I=[x]_0^a

\Rightarrow 2 I=a

\Rightarrow I=\frac{a}{2}

Question 18: \int_0^4|x-1| d x

Solution : I=\int_0^4|x-1| d x

|x-1| = \begin{cases} -(x-1) & x<1 \\(x-1) & x\geq 1\end{cases}

I=\int_0^1-(x-1) d x+\int_1^4(x-1) d x

\left[\text { Using property: } \int_a^b f(x)=\int_a^e f(x)+\int_e^b f(x)\right]

=\left[x-\frac{x^2}{2}\right]_0^1+\left[\frac{x^2}{2}-x\right]_1^4

=1-\frac{1}{2}+\frac{(4)^2}{2}-4-\frac{1}{2}+1

=1-\frac{1}{2}+8-4-\frac{1}{2}+1=5

Question 19: Show that \int_0^a f(x) g(x) d x=2 \int_0^a f(x) d x, \quad if f and g are defined as f(x)=f(a-x)$ and $g(x)+g(a-x)=4

Solution : Let I =\int_0^a f(x) g(x) d x

I =\int_0^a f(a-x) g(a-x) d x

\left[\text { Using property: } \int_0^a f(x) d x=\int_0^a f(a-x) d x\right]

I =\int_0^a f(x) g(a-x) d x

Adding (1) and (2), we have

2 I=\int_0^a\{f(x) g(x)+f(x) g(a-x)\} d x

\Rightarrow 2 I=\int_0^a\{f(x)\{g(x)+g(a-x)\}\} d x

\Rightarrow 2 I=\int_0^a f(x) \times 4 d x \quad \text { [Given that: } g(x)+g(a-x)=4 \text { ] }

\Rightarrow I=2 \int_0^a f(x) d x

Question 20: The value of \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(x^3 d x+x \cos x+\tan ^5 x+1\right) d x is

(A) 0

(B) 2

(C) π

(D) 1

Solution : The correct answer is (C)

Let I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(x^3+x \cos x+\tan ^5 x+1\right) d x

I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^3 d x+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos x d x+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \tan ^5 x d x+\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 d x

We know that,
\int_{-a}^a f(x) d x= \begin{cases}2 \int_0^a f(x) d x & \text { if } f(x) \text { is an even function } \\ 0 & \text { if } f(x) \text { is an odd function }\end{cases}

Therefore,

I=0+0+0+2 \int_0^{\frac{\pi}{2}} 1 d x

=2[x]_0^{\frac{\pi}{2}}=\frac{2 \pi}{2}=\pi

Hence, the correct answer is (C).

Question 21: The value of \int_0^{\frac{\pi}{2}} \log \left(\frac{4+3 \sin x}{4+3 \cos x}\right) d x is

(A) 2

(B) \frac{3}{4}

(C) 0

(D) -2

Solution: The correct answer is (C)

Let I=\int_0^{\frac{\pi}{2}} \log \left(\frac{4+3 \sin x}{4+3 \cos x}\right) d x \quad \ldots(1)

I=\int_0^{\frac{\pi}{2}} \log \left(\frac{4+3 \sin \left(\frac{\pi}{2}-x\right)}{4+3 \cos \left(\frac{\pi}{2}-x\right)}\right) d x \quad\left[\operatorname{sing} \text { property: } \int_0^a f(x) d x=\int_0^a f(a-x) d x\right]

I=\int_0^{\frac{\pi}{2}} \log \left(\frac{4+3 \cos x}{4+3 \sin x}\right) d x

\text { Adding }(1) \text { and }(2), \text { we have, }

2 I=\int_0^{\frac{\pi}{2}}\left\{\log \left(\frac{4+3 \sin x}{4+3 \cos x}\right)+\log \left(\frac{4+3 \cos x}{4+3 \sin x}\right)\right\} d x

\Rightarrow 2 I=\int_0^{\frac{\pi}{2}}\left\{\log \frac{(4+3 \sin x)}{(4+3 \cos x)} \times \frac{(4+3 \cos x)}{(4+3 \sin x)}\right\} d x

\Rightarrow 2 I=\int_0^{\frac{\pi}{2}} \log 1 d x

$I=0$

Hence, the correct answer is (C).

Ex 7.10 integration ncert maths solution class 12

Ex 7.9 integration ncert maths solution class 12

gmath.in

Leave a Comment