Class 12 ncert solution math chapter 5 miscellaneous

The  Class 12 ncert solution math chapter 5 miscellaneous prepared by expert Mathematics teacher at gmath.in as per CBSE  guidelines. See our Class 12 Maths Chapter 5 Continuity and Differentiability Ex miscellaneous Questions with Solutions to help you to revise complete Syllabus and Score More marks in your Board and School exams.

 Chapter 5 Miscellaneous (differentiation )

Differentiate w.r.t. x the function in Exercises 1 to 11.(Class 12 ncert solution math chapter 5 miscellaneous)

Question 1: (3x^2 - 9x + 5)^9

Solution: Let y =(3x^2 - 9x + 5)^9

Differentiate with respect to x

\frac{dy}{dx}=\frac{d}{dx}(3x^2 - 9x + 5)^9

= 9(3x^2 - 9x + 5)^8\frac{d}{dx}(3x^2 - 9x + 5)

=9(3x^2 - 9x + 5)^8(6x-9)

=27(2x-3)(3x^2 - 9x + 5)^8

Question 2: \sin^3 x + \cos^6 x

Solution: Let y = \sin^3 x + \cos^6 x

Differentiate with respect to x

\frac{dy}{dx}=\frac{d}{dx}( \sin^3 x + \cos^6 x)

= 3\sin^2 x\frac{d}{dx}\sin x+6\cos^5 x\frac{d}{dx}\cos x

= 3\sin^2x\cos x+6\cos^5 x(-\sin x)

= 3\sin^2x\cos x-6\sin x\cos^5 x

= 3\sin x\cos x(\sin x-2\cos^4x)

Question 3: (5x)^{3\cos 2x}

Solution: Let y = (5x)^{3\cos 2x}

Taking ‘log’ both side

\log y=\log (5x)^{3\cos 2x}

\log y = 3\cos 2x\log 5x

\frac{d}{dx}\log y = 3\cos 2x\frac{d}{dx}\log 5x+3\log 5x\frac{d}{dx}\cos 2x

\Rightarrow \frac{1}{y}\frac{dy}{dx}= 3\cos 2x \frac{1}{5x}\frac{d}{dx}(5x)+3\log 5x(-2\sin 2x)

\Rightarrow \frac{dy}{dx}=y(3\cos 2x\frac{5}{5x}-6\log 5x \sin 2x)

\Rightarrow \frac{dy}{dx}= (5x)^{3\cos 2x}(\frac{3\cos 2x}{x}-6\log 5x.\sin 2x)

Question 4: \sin^{-1}(x\sqrt{x})

Solution: Let y = \sin^{-1}(x\sqrt{x})

Differentiate with respect to x

\frac{dy}{dx} = \frac{d}{dx}\sin^{-1}(x\sqrt{x})

=\frac{1}{\sqrt{1-(x\sqrt{x})^2}}\frac{d}{dx}x\sqrt{x}

=\frac{1}{\sqrt{1-(x)^3}}\frac{d}{dx}x^{3/2}

=\frac{1}{\sqrt{1-(x)^3}}\frac{3}{2}x^{1/2}

=\frac{3x^{1/2}}{2\sqrt{1-(x)^3}}

=\frac{3}{2}\sqrt{\frac{x}{1-x^3}}

Question 5: \frac{\cos{-1}\frac{x}{2}}{\sqrt{2x+7}}

Solution : Let y=\frac{\cos{-1}\frac{x}{2}}{\sqrt{2x+7}}

Differentiate with respect to x

\frac{dy}{dx}=\frac{d}{dx}\frac{\cos{-1}\frac{x}{2}}{\sqrt{2x+7}}

=\frac{\sqrt{2x+7}\frac{d}{dx}\cos^{-1}\frac{x}{2}-\cos^{-1}\frac{x}{2}\frac{d}{dx}\sqrt{2x+7}}{(\sqrt{2x+7})^2}

=\frac{-\sqrt{2x+7}.\frac{1}{\sqrt{1-(x/2)^2}}.\frac{1}{2}-\cos^{-1}(\frac{x}{2})\frac{1}{2\sqrt{2x+7}}.2}{2x+7}
=\frac{-\frac{2\sqrt{2x+7}}{2\sqrt{4-x^2}}-\frac{\cos^{-1}(x/2)}{\sqrt{2x+7}}}{2x+7}

=\frac{-\sqrt{2x+7}}{\sqrt{4-x^2}.(2x+7)}-\frac{\cos^{-1}x/2}{\sqrt{2x+7}(2x+7)}

=-\frac{1}{\sqrt{4-x^2}\sqrt{2x+7}}-\frac{\cos^{-1}x/2}{(2x+7)^{3/2}}

=-[\frac{1}{\sqrt{4-x^2}\sqrt{2x+7}}+\frac{\cos^{-1}x/2}{(2x+7)^{3/2}}]

Question6: \cot^{-1}\left[\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right],0<x<\frac{\pi}{2}

Solution: Let y=\cot^{-1}\left[\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right] --(i)

Then,

\left[\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right]=\left[\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right]\left[\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}}\right]

=\left[\frac{(\sqrt{1+\sin x}+\sqrt{1-\sin x})^2}{(\sqrt{1+\sin x})^2-(\sqrt{1-\sin x})^2}\right]

=\left[\frac{1+\sin x+1-\sin x+2\sqrt{1+\sin x}\sqrt{1-\sin x}}{1+\sin x-1+\sin x}\right]

=\left[\frac{2+2\sqrt{1-\sin^2x}}{2\sin x}\right]

=\frac{2(1+\cos x)}{2\sin x}

=\frac{2\cos^2\frac{x}{2}}{2\sin\frac{x}{2}.\cos\frac{x}{2}}

=\cot\frac{x}{2}

Therefore from equation (i)

y =\cot^{-1}(\cot \frac{x}{2})

\Rightarrow y =\frac{x}{2}

Differentiate with respect to x

\Rightarrow \frac{dy}{dx}= \frac{1}{2}

Question 7: (\log x)^{(\log x)},x>1

Solution: Let y=(\log x)^{(\log x)}

Taking log both side, we obtain

\log y=\log(\log x)^{(\log x)}

\Rightarrow \log y =\log x.\log(\log x)

Differentiating both sides with respect to x, we obtain

\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{d}{d x}[\log x \cdot \log (\log x)]

\Rightarrow \frac{1}{y} \frac{d y}{d x}=\log (\log x) \cdot \frac{d}{d x}(\log x)+\log x \cdot \frac{d}{d x}[\log (\log x)]

\Rightarrow \frac{d y}{d x}=y\left[\log (\log x) \cdot \frac{1}{x}+\log x \cdot \frac{1}{\log x} \cdot \frac{d}{d x}(\log x)\right]

\Rightarrow \frac{d y}{d x}=y\left[\frac{1}{x} \cdot \log (\log x)+\frac{1}{x}\right]

\Rightarrow \frac{d y}{d x}=(\log x)^{\log x}\left[\frac{1}{x}+\frac{\log (\log x)}{x}\right]

Question 8: \cos (a \cos x+b \sin x), for some constant a and b.

Solution: Let y=\cos (a \cos x+b \sin x)
Using chain rule, we get
\frac{d y}{d x} =\frac{d}{d x} \cos (a \cos x+b \sin x)

=-\sin (a \cos x+b \sin x) \cdot \frac{d}{d x}(a \cos x+b \sin x)

=-\sin (a \cos x+b \sin x) \cdot[a(-\sin x)+b \cos x]
=(a \sin x-b \cos x) \cdot \sin (a \cos x+b \sin x)

Question 9: (\sin x-\cos x)^{(\sin x-\cos x)}, \frac{\pi}{4}<x<\frac{3 \pi}{4}

Solution: Let y=(\sin x-\cos x)^{(\sin x-\cos x)}
Taking log on both the sides, we obtain

\log y =\log \left[(\sin x-\cos x)^{(\sin x-\cos x)}\right]

=(\sin x-\cos x) \log (\sin x-\cos x)

Differentiating both sides with respect to x, we obtain

\frac{1}{y} \frac{d y}{d x}=\frac{d}{d x}[(\sin x-\cos x) \log (\sin x-\cos x)]

\Rightarrow \frac{1}{y} \frac{d y}{d x}=\log (\sin x-\cos x) \cdot \frac{d}{d x}(\sin x-\cos x)+(\sin x-\cos x) \cdot \frac{d}{d x} \log (\sin x-\cos x)

\Rightarrow \frac{1}{y} \frac{d y}{d x}=\log (\sin x-\cos x) \cdot(\cos x+\sin x)+(\sin x-\cos x) \cdot \frac{1}{(\sin x-\cos x)} \cdot \frac{d}{d x}(\sin x-\cos x)

\Rightarrow \frac{d y}{d x}=(\sin x-\cos x)^{(\sin x-\cos x)}[(\cos x+\sin x) \cdot \log (\sin x-\cos x)+(\cos x+\sin x)]

\Rightarrow \frac{d y}{d x}=(\sin x-\cos x)^{(\sin x-\cos x)}(\cos x+\sin x)[1+\log (\sin x-\cos x)]

Question 10: Differentiate with respect to x the function x^x+x^a+a^x+a^a, for some fixed a>0 and x>0.
Solution: Let y=x^x+x^a+a^x+a^a
Also, let x^x=u, x^a=v, a^x=w and a^a=s
Therefore,
\Rightarrow y=u+v+w+s

\Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}+\frac{d w}{d x}+\frac{d s}{d x}

Now, u=x^x
Taking logarithm on both the sides, we obtain
\Rightarrow \log u=\log x^x

\Rightarrow \log u=x \log x

Differentiating both sides with respect to x, we obtain

\frac{1}{u} \frac{d u}{d x} =\log x \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}(\log x)

\Rightarrow \frac{d u}{d x} =u\left[\log x \cdot 1+x \cdot \frac{1}{x}\right]

=x^x[\log x+1]=x^x(1+\log x)
Now, v=x^a
Hence,
\frac{d v}{d x} & =\frac{d}{d x}\left(x^a\right)

=a x^{a-1}

Now, w=a^x

Taking logarithm on both the sides, we obtain
\Rightarrow \log w=\log a^x

\Rightarrow \log w=x \log a

Differentiating both sides with respect to x, we obtain

\frac{1}{w} \frac{d w}{d x} =\log a \cdot \frac{d}{d x}(x)

\Rightarrow \frac{d w}{d x} =w \log a
=a^x \log a

Now, s=a^a
Since a is constant, a^a is also a constant.
Hence,
\frac{d s}{d x}=0
From (1), (2), (3), (4) and (5), we obtain

\frac{d y}{d x} =x^x(1+\log x)+a x^{a-1}+a^x \log a+0

=x^x(1+\log x)+a x^{a-1}+a^x \log a

Question 11: x^{x^2-3}+(x-3)^{x^2}, for x>3.

Solution: Let y=x^{x^2-3}+(x-3)^{x^2}
Also, let u=x^{x^2-3} and v=(x-3)^{x^2} Therefore,
y=u+v
\Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}

Now, u=x^{x^2-3} Taking logarithm on both the sides, we obtain
\log u =\log \left(x^{x^2-3}\right)

=\left(x^2-3\right) \log x

Differentiating both sides with respect to x, we obtain

\frac{1}{u} \frac{d u}{d x}=\log x \cdot \frac{d}{d x}\left(x^2-3\right)+\left(x^2-3\right) \cdot \frac{d}{d x}(\log x)

\Rightarrow \frac{1}{u} \frac{d u}{d x}=\log x \cdot 2 x+\left(x^2-3\right) \cdot \frac{1}{x}

\Rightarrow \frac{d u}{d x}=x^{x^2-3}\left[\frac{x^2-3}{x}+2 x \log x\right]

Now, v=(x-3)^{x^2}

Taking logarithm on both the sides, we obtain
\log v =\log (x-3)^{x^2}
=x^2 \log (x-3)

Differentiating both sides with respect to x, we obtain

\frac{1}{v} \frac{d v}{d x}=\log (x-3) \cdot \frac{d}{d x}\left(x^2\right)+\left(x^2\right) \cdot \frac{d}{d x}[\log (x-3)]

\Rightarrow \frac{1}{v} \frac{d v}{d x}=\log (x-3) \cdot 2 x+x^2 \cdot \frac{1}{x-3} \cdot \frac{d}{d x}(x-3)

\Rightarrow \frac{d v}{d x}=v\left[2 x \log (x-3)+\frac{x^2}{x-3} \cdot 1\right]

\Rightarrow \frac{d v}{d x}=(x-3)^{x^2}\left[\frac{x^2}{x-3}+2 x \log (x-3)\right]

From (1), (2), and (3), we obtain

\frac{d y}{d x}=x^{x^2-3}\left[\frac{x^2-3}{x}+2 x \log x\right]+(x-3)^{x^2}\left[\frac{x^2}{x-3}+2 x \log (x-3)\right]

Question 12: Find \frac{d y}{d x}, if y=12(1-\cos t), x=10(t-\sin t), \frac{-\pi}{2}<t<\frac{\pi}{2}

Solution: The given function is y=12(1-\cos t), x=10(t-\sin t)

Hence,

\frac{d x}{d t} =\frac{d}{d t}[10(t-\sin t)]

=10 \cdot \frac{d}{d t}(t-\sin t)

=10(1-\cos t)

\frac{d y}{d t} =\frac{d}{d t}[12(1-\cos t)]

=12 \cdot \frac{d}{d t}(1-\cos t)

=12 \cdot[0-(-\sin t)]

=12 \sin t

Therefore,

\frac{d y}{d x} & =\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{12 \sin t}{10(1-\cos t)}

=\frac{12 \cdot 2 \sin \frac{t}{2} \cdot \cos \frac{t}{2}}{10 \cdot 2 \sin ^2 \frac{t}{2}}

=\frac{6}{5} \cot \frac{t}{2}

Question 13: Find \frac{d y}{d x}, if y=\sin ^{-1} x+\sin ^{-1} \sqrt{1-x^2},0 \leq x \leq 1.

Solution: The given function is y=\sin ^{-1} x+\sin ^{-1} \sqrt{1-x^2} --(i)

Let I=\sin^{-1}\sqrt{1-x^2}

Let x =\cos z\Rightarrow z=\cos^{-1}x

I=\sin^{-1}(\sqrt{1-\cos^2z})

=\sin^{-1}\sin z =z

\Rightarrow I=\cos^{-1}x

Hence,

From (i)

y=\sin^{-1}x+\cos^{-1}x = \frac{\pi}{2}

Differentiate with respect to x

\frac{dy}{dx}= 0

Question 14: If x \sqrt{1+y}+y \sqrt{1+x}=0 for -1<x<1, prove that \frac{d y}{d x}=-\frac{1}{(1+x)^2}.

Solution:The given function is x \sqrt{1+y}+y \sqrt{1+x}=0

\Rightarrow x \sqrt{1+y}=-y \sqrt{1+x}

Squaring both sides, we obtain

x^2(1+y)=y^2(1+x)

\Rightarrow x^2+x^2 y=y^2+x y^2

\Rightarrow x^2-y^2=x y^2-x^2 y

\Rightarrow x^2-y^2=x y(y-x)

\Rightarrow (x+y)(x-y)=x y(y-x)

\Rightarrow x+y=-x y

\Rightarrow (1+x) y=-x

\Rightarrow y=\frac{-x}{(1+x)}

Differentiating both sides with respect to x, we obtain

\frac{d y}{d x} =-\left[\frac{(1+x) \frac{d}{d x}(x)-(x) \cdot \frac{d}{d x}(1+x)}{(1+x)^2}\right]

=-\frac{(1+x)-x}{(1+x)^2}

=-\frac{1}{(1+x)^2}

Hence proved.

Question 15:If (x-a)^2+(y-b)^2=c^2 for c>0, prove that \frac{\left[1+\left(\frac{d y}{d x}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2 y}{d x^2}}

is a constant independent of a and b.

Solution:The given function is (x-a)^2+(y-b)^2=c^2

Differentiating both sides with respect to x, we obtain

\frac{d}{d x}\left[(x-a)^2\right]+\frac{d}{d x}\left[(y-b)^2\right]=\frac{d}{d x}\left(c^2\right)

\Rightarrow 2(x-a) \cdot \frac{d}{d x}(x-a)+2(y-b) \cdot \frac{d}{d x}(y-b)=0

\Rightarrow 2(x-a) \cdot 1+2(y-b) \cdot \frac{d y}{d x}=0

\Rightarrow \frac{d y}{d x}=\frac{-(x-a)}{y-b}

Therefore,

\frac{d^2 y}{d x^2} =\frac{d}{d x}\left[\frac{-(x-a)}{y-b}\right]

=-\left[\frac{(y-b) \cdot \frac{d}{d x}(x-a)-(x-a) \cdot \frac{d}{d x}(y-b)}{(y-b)^2}\right]

=-\left[\frac{(y-b)-(x-a) \cdot \frac{d y}{d x}}{(y-b)^2}\right]

=-\left[\frac{(y-b)-(x-a) \cdot\left\{\frac{-(x-a)}{y-b}\right\}}{(y-b)^2}\right] \quad[\text { Using (1)] }

=-\left[\frac{\left.(y-b)^2+(x-a)^2\right]}{(y-b)^3}\right]

Hence,

\frac{\left[1+\left(\frac{d y}{d x}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2 y}{d x^2}}=\frac{\left[1+\frac{(x  a)^2}{(y-b)^2}\right]^{\frac{3}{2}}}{-\left[\frac{(y-b)^2+(x-a)^2}{(y-b)^3}\right]}

=\frac{\left[\frac{(y-b)^2+(x-a)^2}{(y-b)^2}\right]^{\frac{3}{2}}}{-\left[\frac{(y-b)^2+(x-a)^2}{(y-b)^3}\right]}

=\frac{\left[\frac{c^2}{(y-b)^2}\right]^{\frac{3}{2}}}{-\frac{c^2}{(y-b)^3}}

=\frac{\frac{c^3}{(y-b)^3}}{-\frac{c^2}{(y-b)^3}}

=-c

-c is a constant and is independent of a and b.

Hence proved.

Question 16: If \cos y=x \cos (a+y) with \cos a \neq \pm 1, prove that \frac{d y}{d x}=\frac{\cos ^2(a+y)}{\sin a}.
Solution: The given function is \cos y=x \cos (a+y)

Therefore,

\Rightarrow \frac{d}{d x}[\cos y]=\frac{d}{d x}[x \cos (a+y)]

\Rightarrow-\sin y \frac{d y}{d x}=\cos (a+y) \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}[\cos (a+y)]

\Rightarrow-\sin y \frac{d y}{d x}=\cos (a+y)+x \cdot[-\sin (a+y)] \frac{d y}{d x}

\Rightarrow[x \sin (a+y)-\sin y] \frac{d y}{d x}=\cos (a+y) ---(i)

Since, \cos y=x\cos(a+y)

\Rightarrow x=\frac{\cos y}{\cos(a+y)}

Then, equation (1) becomes,

{\left[\frac{\cos y}{\cos (a+y)} \cdot \sin (a+y)-\sin y\right] \frac{d y}{d x}=\cos (a+y)}

\Rightarrow[\cos y \cdot \sin (a+y)-\sin y \cdot \cos (a+y)] \cdot \frac{d y}{d x}=\cos ^2(a+y)

\Rightarrow \sin (a+y-y) \frac{d y}{d x}=\cos ^2(a+y)

\Rightarrow \frac{d y}{d x}=\frac{\cos ^2(a+y)}{\sin a}

Hence proved.

Question 17: If x=a(\cos t+t \sin t) and y=a(\sin t-t \cos t), find \frac{d^2 y}{d x^2}.

Solution: The given function is x=a(\cos t+t \sin t) and y=a(\sin t-t \cos t) Therefore,

\frac{d x}{d t}=a \cdot \frac{d}{d t}(\cos t+t \sin t)

=a\left[-\sin t+\sin t \cdot \frac{d}{d x}(t)+t \cdot \frac{d}{d t}(\sin t)\right]

=a[-\sin t+\sin t+t \cos t]

=a t \cos t

\frac{d y}{d t}=a \cdot \frac{d}{d t}(\sin t-t \cos t)

=a\left[\cos t-\left\{\cos t \cdot \frac{d}{d t}(t)+t \cdot \frac{d}{d t}(\cos t)\right\}\right]

=a[\cos t-\{\cos t-t \sin t\}]

=a t \sin t

\frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}=\frac{a t \sin t}{a t \cos t}=\tan t

\frac{d^2 y}{d x^2}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}(\tan t)=\sec ^2 t \cdot \frac{d t}{d x}

=\sec ^2 t . \frac{1}{a t \cos t} \quad\left[\frac{d x}{d t}=a t \cos t \Rightarrow \frac{d t}{d x}=\frac{1}{a t \cos t}\right]

=\frac{\sec ^3 t}{a t}, 0<t<\frac{\pi}{2}

Question 18: If f(x)=|x|^3, show that f^{\prime \prime}(x) exists for all real x, and find it.

Solution: It is known that |x|=\left\{\begin{array}{l}x, \text { if } x \geq 0 \\ -x, \text { if } x<0\end{array}\right.

Therefore, when x \geq 0, f(x)=|x|^3=x^3

In this case, f^{\prime}(x)=3 x^2 and hence, f^{\prime \prime}(x)=6 x

When x<0, f(x)=|x|^3=(-x)^3=-x^3

In this case, f^{\prime}(x)=-3 x^2 and hence, f^{\prime \prime}(x)=-6 x

Thus, for f(x)=|x|^3, f^{\prime \prime}(x) exists for all real x and is given by,

f^{\prime \prime}(x)=\left\{\begin{array}{l} 6 x, \text { if } x \geq 0 \\ -6 x, \text { if } x<0 \end{array}\right.

Question 19: Using mathematical induction prove that \frac{d}{d x}\left(x^n\right)=n x^{n-1} for all positive integers n.

Solution:To prove: P(n): \frac{d}{d x}\left(x^n\right)=n x^{n-1} for all positive integers n.

For n=1,

P(1): \frac{d}{d x}(x)=1=1 \cdot x^{1-1}

Therefore, P(n) is true for n=1.

Let P(k) is true for some positive integer k.

That is, P(k): \frac{d}{d x}\left(x^k\right)=k x^{k-1}--(i)

It has to be proved that P(k+1) is also true.

P(k+1):\frac{d}{dx}x^{k+1}=(k+1)x^k

Taking, L.H.S.

\frac{d}{d x}\left(x^{k+1}\right) =\frac{d}{d x}\left(x \cdot x^k\right)

=x^k \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}\left(x^k\right) \quad \text { [By applying product rule] }

=x^k \cdot 1+x \cdot k \cdot x^{k-1} [\text{ from (i)}]

\frac{d}{d x}\left(x^{k+1}\right) =x^k+k x^k

=(k+1) \cdot x^k

=(k+1) \cdot x^{(k+1)-1}

Thus, P(k+1) is true whenever P(k) is true.

Therefore, by the principle of mathematical induction, the statement P(n) is true for every positive integer n.

Hence, proved.

Question 20: Using the fact that \sin (A+B)=\sin A \cos B+\cos A \sin B and the differentiation, obtain the sum formula for cosines.

Solution: Given, \sin (A+B)=\sin A \cos B+\cos A \sin B

Differentiating both sides with respect to x, we obtain

\frac{d}{d x}[\sin (A+B)]=\frac{d}{d x}(\sin A \cos B)+\frac{d}{d x}(\cos A \sin B)

\Rightarrow \cos (A+B) \cdot \frac{d}{d x}(A+B)=\cos B \cdot \frac{d}{d x}(\sin A)+\sin A \cdot \frac{d}{d x}(\cos B)+\sin B \cdot \frac{d}{d x}(\cos A)+\cos A \cdot \frac{d}{d x}(\sin B)

\Rightarrow \cos (A+B) \cdot \frac{d}{d x}(A+B)=\cos B \cdot \cos A \frac{d A}{d x}+\sin A(-\sin B) \frac{d B}{d x}+\sin B(-\sin A) \cdot \frac{d A}{d x}+\cos A \cos B \frac{d B}{d x}

\Rightarrow \cos (A+B) \cdot\left[\frac{d A}{d x}+\frac{d B}{d x}\right]=(\cos A \cos B-\sin A \sin B) \cdot\left[\frac{d A}{d x}+\frac{d B}{d x}\right]

\Rightarrow \cos (A+B)=\cos A \cos B-\sin A \sin B

Question 21: Does there exist a function which is continuous everywhere but not differentiable at exactly two points? Justify your answer?

Solution: Consider, \quad y= \begin{cases}|x| & -\infty<x \leq 1 \\ 2-x & 1 \leq x \leq \infty\end{cases}

It can be seen from the above graph that the given function is continuous everywhere but not differentiable at exactly two points which are 0 and 1.

Question 22: y=\left|\begin{array}{ccc} f(x) & g(x) & h(x) \\ l & m & n \\ a & b & c \end{array}\right| \text {, prove that } \frac{d y}{d x}=\left|\begin{array}{ccc} f^{\prime}(x) & g^{\prime}(x) & h^{\prime}(x) \\ l & m & n \\ a & b & c \end{array}\right|

Solution: y =\begin{vmatrix} f(x) & g(x) & h(x)\\ l & m & n \\ a & b & c\end{vmatrix}

Differentiate with respect to x

\frac{dy}{dx}=\begin{vmatrix} \frac{d}{dx}f(x) & \frac{d}{dx}g(x) & \frac{d}{dx}h(x) \\ l & m & n\\ a & b & c\end{vmatrix}+\begin{vmatrix} f(x) & g(x) & h(x) \\\frac{d}{dx}l & \frac{d}{dx}m & \frac{d}{dx}n \\ a & b & c\end{vmatrix}+\begin{vmatrix} f(x) & g(x) & h(x)\\l & m & n\\\frac{d}{dx}a & \frac{d}{dx}b & \frac{d}{dx}c\end{vmatrix}

=\begin{vmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n\\ a & b & c\end{vmatrix}+\begin{vmatrix} f(x) & g(x) & h(x) \\ 0 & 0 & 0 \\ a & b & c\end{vmatrix}+\begin{vmatrix} f(x) & g(x) & h(x)\\l & m & n \\ 0 & 0 & 0\end{vmatrix}

=\begin{vmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n\\ a & b & c\end{vmatrix}+0+0
=\begin{vmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n\\ a & b & c\end{vmatrix}

Hence proved

Question 23: If y=e^{\cos^{-1}x},-1\leq x\leq 1, Show that (1-x^2)\frac{d^2y}{dx^2}-x\frac{dy}{dx}-a^2y=0.

Solution: y=e^{a\cos^{-1}x}

Differentiate with respect to x

\frac{dy}{dx}=\frac{d}{dx}e^{a\cos^{-1}x}

\Rightarrow \frac{dy}{dx}=e^{a\cos^{-1}x}.\frac{d}{dx}a\cos^{-1}x

\Rightarrow \frac{dy}{dx}=e^{a\cos^{-1}x}a.\frac{1}{\sqrt{1-x^2}}

Multiply by \sqrt{1-x^2} both side

\sqrt{1-x^2}\frac{dy}{dx}= ae^{a\cos{-1}x}

\sqrt{1-x^2}\frac{dy}{dx}= ay

Squaring both side

(\sqrt{1-x^2}\frac{dy}{dx})^2=(ay)^2

(1-x^2)(\frac{dy}{dx})^2=a^2y^2

Again differentiate with respect to x

\frac{d}{dx}(1-x^2)(\frac{dy}{dx})^2=a^2\frac{d}{dx}y^2

\Rightarrow (1-x^2)2\frac{dy}{dx}\frac{d^2y}{dx^2}+(\frac{dy}{dx})^2(-2x)=a^22y\frac{dy}{dx}

Divide by 2\frac{dy}{dx} both side

(1-x^2)\frac{d^2y}{dx^2}-x\frac{dy}{dx}=a^2y

(1-x^2)\frac{d^2y}{dx^2}-x\frac{dy}{dx}-a^2y=0

NCERT solution chapter 5 continuity and differentiability

1. Ncert solution  Exercise 5.1 continuity and differentiability

2. Ncert solution  Exercise 5.2 continuity and differentiability

3. Ncert solution  Exercise 5.3 continuity and differentiability

4. Ncert solution  Exercise 5.4 continuity and differentiability

5. Ncert solution  Exercise 5.5 continuity and differentiability

6. Ncert solution  Exercise 5.6 continuity and differentiability

7.  Ncert solution  Exercise 5.7 continuity and differentiability

Leave a Comment