Class 12 ncert solution math exercise 5.3

           Exercise 5.3

Find \frac{dy}{dx} in the following(Class 12 ncert solution math exercise 5.3)

Question 1: 2x + 3y = sin x

Solution: 2x + 3y = sin x

Differentiate with respect to x

\frac{d}{dx}(2x+3y)= \frac{d}{dx}\sin x

\Rightarrow 2 + 3\frac{dy}{dx} = \cos x

\Rightarrow 3\frac{dy}{dx} = \cos x -2

\Rightarrow \frac{dy}{dx} = \frac{\cos x-2}{3}

Question 2:- 2x + 3y = sin y

Solution :- 2x + 3y = sin y

Differentiate w.r.t. x
\frac{d}{dx}(2x+3y)=\frac{d}{dx}\sin y

\frac{}{} \Rightarrow 2.1 + 3.\frac{dy}{dx}= \cos y\frac{dy}{dx}

\Rightarrow 2 = \cos y\frac{dy}{dx}-3\frac{dy}{dx}

\Rightarrow (\cos y - 3)\frac{dy}{dx}= 2

\Rightarrow \frac{dy}{dx} = \frac{2}{(\cos y - 2)}

Question3: ax + by^2 = cos y

Solution: ax + by^2 = cos y

Differentiate with respect to x

\frac{d}{dx}(ax+by^2)=\frac{d}{dx}\cos y

\Rightarrow a.1+b.2y\frac{dy}{dx}=-\sin y\frac{dy}{dx}

\Rightarrow a=-\sin y\frac{dy}{dx}-2by\frac{dy}{dx}

\Rightarrow a = -(\sin y+2by)\frac{dy}{dx}

\Rightarrow \frac{dy}{dx} = -\frac{a}{\sin y+2by}

Question 4:- xy + y^2 = \tan x + y

Solution: xy + y^2 = \tan x + y

Differentiate with respect to x

\frac{d}{dx}(xy+y^2)=\frac{d}{dx}(\tan x+y)

\Rightarrow x\frac{d}{dx}y+y\frac{d}{dx}x+\frac{d}{dx}y^2=\frac{d}{dx}\tan x+\frac{d}{dx}y

\Rightarrow x\frac{dy}{dx}+y.1+2y\frac{dy}{dx}=\sec^2x +\frac{dy}{dx}

\Rightarrow x\frac{dy}{dx}+2y\frac{dy}{dx}-\frac{dy}{dx}=\sec^2x-y

\Rightarrow \frac{dy}{dx}(x+2y-1)=\sec^2x-y

\Rightarrow \frac{dy}{dx} = \frac{\sec^2x-y}{x+2y-1}

Question 5: x^2 + xy + y^2 = 100

Solution : x^2 + xy + y^2 = 100

Differentiate with respect to x

\frac{d}{dx}(x^2+xy+y^2)=\frac{d}{dx}100

\Rightarrow \frac{d}{dx}x^2+\frac{d}{dx}xy+\frac{d}{dx}y^2 =0

\Rightarrow 2x +x\frac{dy}{dx}+y.1 + 2y\frac{dy}{dx}=0

\Rightarrow \frac{dy}{dx}(x+2y)=-2x-y

\Rightarrow \frac{dy}{dx} = \frac{-2x-y}{x+2y}

\Rightarrow \frac{dy}{dx} = -\frac{(2x+y)}{(x+2y)}

Question 6: x^3 + x^2y + xy^2 + y^3 = 81

Solution: x^3 + x^2y + xy^2 + y^3 = 81

Differentiate with respect to x

\frac{d}{dx}(x^3 + x^2y + xy^2 + y^3)=\frac{d}{dx}81

\Rightarrow \frac{d}{dx}x^3+x^2\frac{d}{dx}y+y\frac{d}{dx}x^2+x\frac{d}{dx}y^2+y^2\frac{d}{dx}x+\frac{d}{dx}y^3= 0

\Rightarrow 3x^2+x^2\frac{dy}{dx}+y.2x+x.2y\frac{dy}{dx}+y^2.1+3y^2\frac{dy}{dx}=0

\Rightarrow \frac{dy}{dx}(x^2+2xy+3y^2)=(-3x^2-2xy-y^2)

\Rightarrow \frac{dy}{dx} = -\frac{(3x^2+2xy+y^2)}{(x^2+2xy+3y^2)}

Question 7: \sin^2 y + \cos (xy) =k

Solution: \sin^2 y + \cos (xy) =k

Differentiate with respect to x

\frac{d}{dx}(\sin^2 y + \cos (xy))=\frac{d}{dx}k

\Rightarrow \frac{d}{dx}\sin^2y+\frac{d}{dx}\cos(xy)= 0

\Rightarrow 2\sin y\frac{d}{dx}\sin y -\sin(xy)\frac{d}{dx}x.y=0

\Rightarrow 2\sin y\cos y\frac{dy}{dx}-\sin(xy)(x\frac{d}{dx}y+y\frac{d}{dx}x)=0

\Rightarrow \sin 2y\frac{dy}{dx}-\sin(xy)(x\frac{dy}{dx}+y.1)= 0

\Rightarrow \sin 2y\frac{dy}{dx} -x\sin(xy)\frac{dy}{dx}-y\sin(xy) = 0

\Rightarrow \frac{dy}{dx}(\sin 2y-x\sin(xy))=y\sin(xy)

\Rightarrow \frac{dy}{dx} = \frac{y\sin(xy)}{\sin 2y-x\sin(xy)}

Question 8: \sin^2x+\cos^2y=1

Solution: \sin^2x+\cos^2y=1

Differentiate with respect to x

\frac{d}{dx}(\sin^2x+\cos^2y)=\frac{d}{dx}1

\Rightarrow \frac{d}{dx}\sin^2x +\frac{d}{dx}\cos^2y= 0

\Rightarrow 2\sin x\frac{d}{dx}\sin x +2\cos y\frac{d}{dx}\cos y=0

\Rightarrow 2\sin x\cos x +2\cos y(-\sin y)\frac{dy}{dx}=0

\Rightarrow \sin 2x -\sin 2y\frac{dy}{dx} =0

\Rightarrow -\sin 2y\frac{dy}{dx}=-\sin 2x

\Rightarrow \frac{dy}{dx} = \frac{\sin 2x}{\sin 2y}

Question 9: y=\sin^{-1}\left(\frac{2x}{1+x^2}\right)

Solution: y=\sin^{-1}\left(\frac{2x}{1+x^2}\right)

Let x = \tan\theta

Then,

y =\sin^{-1}\left(\frac{2\tan\theta}{1+\tan^2\theta}\right)

\Rightarrow y = \sin^{-1}\sin 2\theta

\Rightarrow y = 2\theta

\Rightarrow y = 2\tan^{-1}x

Differentiate with respect to x

\frac{dy}{dx} = \frac{d}{dx}2\tan^{-1}x

\Rightarrow \frac{dy}{dx} = 2\frac{d}{dx}\tan^{-1}x

\Rightarrow \frac{dy}{dx} = 2\frac{1}{1+x^2}

\Rightarrow \frac{dy}{dx} = \frac{2}{1+x^2}

Question 10: y =\tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right),-\frac{1}{\sqrt{3}}<x<\frac{1}{\sqrt{3}}

Solution: y =\tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right)

Let x = \tan\theta

y = \tan^{-1}\left(\frac{3\tan\theta-\tan^3\theta}{1-3\tan^2\theta}\right)

\Rightarrow y = \tan^{-1}\tan 3\theta

\Rightarrow y = 3\theta

\Rightarrow y = 3\tan^{-1}x

Differentiate with respect to x

\frac{dy}{dx}=3\frac{d}{dx}\tan^{-1}x

\Rightarrow \frac{dy}{dx} = 3\frac{1}{1+x^2}

\Rightarrow \frac{dy}{dx} = \frac{3}{1+x^2}

Question 11:y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right),0<x<1

Solution : y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right),0<x<1

Let x = \tan\theta

y = \cos^{-1}\left(\frac{1-\tan^2\theta}{1-\tan^2\theta}\right)

\Rightarrow y = \cos^{-1}\cos 2\theta

\Rightarrow y = 2\theta

\Rightarrow y = 2\tan^{-1}x

Differentiate with respect to x

\frac{dy}{dx} = 2\frac{d}{dx}\tan^{1}x

\Rightarrow \frac{dy}{dx} = 2\frac{1}{1+x^2}

\Rightarrow \frac{dy}{dx} = \frac{2}{1+x^2}

Question 12: y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right),0<x<1

Solution : y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right),0<x<1

Let x = \tan\theta

y = \sin^{-1}\left(\frac{1-\tan^2\theta}{1-\tan^2\theta}\right)

\Rightarrow y = \sin^{-1}\cos 2 \theta

\Rightarrow y = \sin^{-1}\sin(\frac{\pi}{2}-2\theta)

\Rightarrow y = \frac{\pi}{2}-2\theta

\Rightarrow y =\frac{\pi}{2}- 2\tan^{-1}x

Differentiate with respect to x

\frac{dy}{dx} = \frac{d}{dx}(\frac{\pi}{2}- 2\tan^{-1}x)

\Rightarrow \frac{dy}{dx} = 0-2\frac{d}{dx}\tan^{-1}x

\Rightarrow \frac{dy}{dx} = -2\frac{1}{1+x^2}

\Rightarrow \frac{dy}{dx} = -\frac{2}{1+x^2}

Question 13: y =\cos^{-1}\left(\frac{2x}{1+x^2}\right),-1<x<1

Solution: y =\cos^{-1}\left(\frac{2x}{1+x^2}\right),-1<x<1

Let x= \tan\theta

y = \cos^{-1}\left(\frac{2\tan\theta}{1+\tan^2\theta}\right)

\Rightarrow y = \cos^{-1}\sin 2\theta

\Rightarrow y= \cos^{-1}\cos(\frac{\pi}{2}-2\theta)

\Rightarrow y = \frac{\pi}{2}-2\theta

\Rightarrow y = \frac{\pi}{2}-2\tan^{-1}\theta

Differentiate with respect to x

\frac{dy}{dx}=0-2\frac{d}{dx}\tan^{-1}x

\Rightarrow \frac{dy}{dx} = -2\frac{1}{1+x^2}

\Rightarrow \frac{dy}{dx} = -\frac{2}{1+x^2}

Question 14: y= \sin^{-1}(2x\sqrt{1-x^2}),-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}

Solution: y= \sin^{-1}(2x\sqrt{1-x^2}),-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}

Let x = \sin\theta

y = \sin^{-1}(2\sin\theta\sqrt{1-\sin^2\theta})

\Rightarrow y= \sin^{-1}(2\sin\theta\cos\theta)

\Rightarrow y = \sin^{-1}\sin 2\theta

\Rightarrow y = 2\theta

\Rightarrow y = 2\sin^{-1}x

Differentiate with respect to x

\frac{dy}{dx} = 2\frac{d}{dx}\sin^{-1}x

\Rightarrow \frac{dy}{dx} = 2\frac{1}{\sqrt{1-x^2}}

\Rightarrow \frac{dy}{dx} = \frac{2}{\sqrt{1-x^2}}

Question 15: y = \sec^{-1}\left(\frac{1}{2x^2-1}\right),0<x<\frac{1}{\sqrt{2}}

Solution: y = \sec^{-1}\left(\frac{1}{2x^2-1}\right),0<x<\frac{1}{\sqrt{2}}

Let, x = \cos \theta

y = \sec^{-1}\left(\frac{1}{2\cos^2\theta-1}\right)

\Rightarrow y = \sec^{-1}\frac{1}{\cos 2\theta}

\Rightarrow y = \sec^{-1}\sec2\theta

\Rightarrow y = 2\theta

\Rightarrow y =2\cos^{-1}x

Differentiate with respect to x

\frac{dy}{dx} = 2\frac{d}{dx}\cos^{-1}x

\Rightarrow \frac{dy}{dx} = 2\frac{-1}{\sqrt{1-x^2}}

\Rightarrow \frac{dy}{dx} = -\frac{2}{\sqrt{1-x^2}}


 

Class 12 relation and functions multiple choice

Case study relation and function 4
Student of gade 9,planned to plant saplings along straight lines

 

 

Leave a Comment