class 12 maths chapter 3 Miscellaneous solution

Chapter 3 ( Miscellaneous)

class 12 maths chapter 3 Miscellaneous solution

Question 1: Let ,A=\begin{bmatrix} 0&1\\0&0\end{bmatrix}show that , (aI+bA)^n=a^nI+na^{n-1}bA where I is the identity matrix of order 2 andn\in N.

Solution: It is given that A=\begin{bmatrix} 0&1\\0&0\end{bmatrix}
(aI+bA)=a\begin{bmatrix} 1&0\\0&1\end{bmatrix}+b\begin{bmatrix} 0&1\\0&0\end{bmatrix}

\Rightarrow (aI+bA)=\begin{bmatrix} a&0\\0&a\end{bmatrix}+\begin{bmatrix} 0&b\\0&0\end{bmatrix}

\Rightarrow (aI+bA)=\begin{bmatrix} a&b\\0&a\end{bmatrix}
LHS.
\Rightarrow (aI+bA)^n=\begin{bmatrix} a&b\\0&a\end{bmatrix}^n
RHS.
a^nI+na^{n-1}bA=a^n\begin{bmatrix} 1&0\\0&1\end{bmatrix}+na^{n-1}b\begin{bmatrix} 0&1\\0&0\end{bmatrix}

\Rightarrow a^nI+na^{n-1}bA=a^n\begin{bmatrix} 1&0\\0&1\end{bmatrix}+na^{n-1}b\begin{bmatrix} 0&1\\0&0\end{bmatrix}

\Rightarrow a^nI+na^{n-1}bA=\begin{bmatrix} a^n&0\\0&a^n\end{bmatrix}+\begin{bmatrix} 0&na^{n-1}b\\0&0\end{bmatrix}

\Rightarrow a^nI+na^{n-1}bA=\begin{bmatrix} a^n&na^{n-1}b\\0&a^n\end{bmatrix}
Since,

(aI+bA)^n=a^nI+na^{n-1}bA
Hence,

\begin{bmatrix} a&b\\0&a\end{bmatrix}^n=\begin{bmatrix} a^n&na^{n-1}b\\0&a^n\end{bmatrix}

We shall prove the result by using the principle of mathematical induction.

For n=1, we have:

P(1):\begin{bmatrix} a&b\\0&a\end{bmatrix}^1=\begin{bmatrix} a^n&1a^{1-1}b\\0&a^n\end{bmatrix}

\Rightarrow\begin{bmatrix} a&b\\0&a\end{bmatrix}=\begin{bmatrix} a^n&b\\0&a^n\end{bmatrix}

Therefore, the result is true for n=1 .

Let the result be true for n=k
That is :

P(k):\begin{bmatrix} a&b\\0&a\end{bmatrix}^k=\begin{bmatrix} a^k&ka^{k-1}b\\0&a^k\end{bmatrix}---(1)

Now, we have to prove that the result is true for n=k+1
Consider,

P(k+1):\begin{bmatrix} a&b\\0&a\end{bmatrix}^{k+1}=\begin{bmatrix} a^{k+1}&(k+1)a^{k}b\\0&a^{k+1}\end{bmatrix}

LHS.

\begin{bmatrix} a&b\\0&a\end{bmatrix}^{k+1}=\begin{bmatrix} a&b\\0&a\end{bmatrix}^k\begin{bmatrix} a&b\\0&a\end{bmatrix}

\Rightarrow \begin{bmatrix} a&b\\0&a\end{bmatrix}^{k+1}=\begin{bmatrix} a^k&ka^{k-1}b\\0&a^k\end{bmatrix}\begin{bmatrix} a&b\\0&a\end{bmatrix} \space [from (1)]

=\begin{bmatrix} a^ka+0&ba^k+ka^{k-1}ab\\0+0&0+a^ka\end{bmatrix}

=\begin{bmatrix} a^{k+1}&(k+1)a^{k}b\\0&a^{k+1}\end{bmatrix}

=RHS
Therefore, the result is true for n=k+1

Question 2: If A=\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix},prove that A^n=\begin{bmatrix}3^{n-1}&3^{n-1}&3^{n-1}\\3^{n-1}&3^{n-1}&3^{n-1}\\3^{n-1}&3^{n-1}&3^{n-1}\end{bmatrix}, n\in N

Solution: It is given that A=\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}

We shall prove the result by using the principle of mathematical induction.

Let the result be true for n=1 .
Now, we have:
P(1):A^1=\begin{bmatrix}3^{1-1}&3^{1-1}&3^{1-1}\\3^{1-1}&3^{1-1}&3^{1-1}\\3^{1-1}&3^{1-1}&3^{1-1}\end{bmatrix}

\Rightarrow A^1=\begin{bmatrix}3^0&3^0&3^0\\3^0&3^0&3^0\\3^0&3^0&3^0\end{bmatrix}

\Rightarrow A^1=\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}
Therefore, the result is true for n=1.
Let the result be true for n=k .

P(k):A^k=\begin{bmatrix}3^{k-1}&3^{k-1}&3^{k-1}\\3^{k-1}&3^{k-1}&3^{k-1}\\3^{k-1}&3^{k-1}&3^{k-1}\end{bmatrix}---(1)

Now, we have to prove that the result is true for n=k+1.
Since,

P(k+1):A^{k+1}=\begin{bmatrix}3^k&3^k&3^k\\3^k&3^k&3^k\\3^k&3^k&3^k\end{bmatrix}

LHS

A^{k+1}=A^kA

=\begin{bmatrix}3^{k-1}&3^{k-1}&3^{k-1}\\3^{k-1}&3^{k-1}&3^{k-1}\\3^{k-1}&3^{k-1}&3^{k-1}\end{bmatrix}\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}-----[From (1)]

=\begin{bmatrix}3^{k-1}+3^{k-1}+3^{k-1}&3^{k-1}+3^{k-1}+3^{k-1}&3^{k-1}+3^{k-1}+3^{k-1}\\3^{k-1}+3^{k-1}+3^{k-1}&3^{k-1}+3^{k-1}+3^{k-1}&3^{k-1}+3^{k-1}+3^{k-1}\\3^{k-1}+3^{k-1}+3^{k-1}&3^{k-1}+3^{k-1}+3^{k-1}&3^{k-1}+3^{k-1}+3^{k-1}\end{bmatrix}

=\begin{bmatrix}3.3^{k-1}&3.3^{k-1}&3.3^{k-1}\\3.3^{k-1}&3.3^{k-1}&3.3^{k-1}\\3.3^{k-1}&3.3^{k-1}&3.3^{k-1}\end{bmatrix}

=\begin{bmatrix}3^k&3^k&3^k\\3^k&3^k&3^k\\3^k&3^k&3^k\end{bmatrix}

=RHS

Therefore, the result is true for n=k+1.

Question 3: If A=\begin{bmatrix}3&-4\\1&-1\end{bmatrix},prove that A^n=\begin{bmatrix}1+2n&-4n\\n&1-2n\end{bmatrix},where is any positive integer.

Solution: It is given that A=\begin{bmatrix}3&-4\\1&-1\end{bmatrix}

We shall prove the result by using the principle of mathematical induction.

For n=1 , we have:

P(1):A^1=\begin{bmatrix}1+2(1)&-4(1)\\(1)&1-2(1)\end{bmatrix}

=\begin{bmatrix}3&-4\\1&-1\end{bmatrix}

=A

Therefore, the result is true for n=1

Let the result be true for n=k .

A^k=\begin{bmatrix}1+2k&-4k\\k&1-2k\end{bmatrix},k\in N---(1)

Now, we have to prove that the result is true for n=k+1.

Since,

A^{k+1}=\begin{bmatrix}1+2(k+1)&-4(k+1)\\(k+1)&1-2(k+1)\end{bmatrix}

LHS

A^{k+1}=A^kA

=\begin{bmatrix}1+2k&-4k\\k&1-2k\end{bmatrix}\begin{bmatrix}3&-4\\1&-1\end{bmatrix}

=\begin{bmatrix}3+6k-4k&-4-8k+4k\\3k+1-2k&-4k-1+2k\end{bmatrix}

=\begin{bmatrix}3+2k&-4-4k\\k+1&-1-2k\end{bmatrix}

RHS

\begin{bmatrix}1+2(k+1)&-4(k+1)\\(k+1)&1-2(k+1)\end{bmatrix}

\begin{bmatrix}1+2k+2&-4k-4\\(k+1)&1-2k-2\end{bmatrix}

\begin{bmatrix}3+2k&-4k-4)\\(k+1)&-1-2k\end{bmatrix}
Hence,

LHS=RHS

Therefore, the result is true for n=k+1

Question 4: If AandB are symmetric matrices, prove thatAB-BA is a skew symmetric matrix.

Solution: It is given thatA andB are symmetric matrices.

Therefore, we have:

A'=A and B'=B ----(1)
Now,

(AB-BA)'=(AB)'-(BA)'

=B'A'-A'B'

=BA-AB

=-(AB-BA)

Hence,

(AB-BA)'=-(AB-BA)

Thus, AB-BAis a skew symmetric matrix.

Question 5: Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric orskew symmetric.

Solution: We suppose thatA is a symmetric matrix, then

A'=A------(1)

Consider,

(B'AB)'=\{B'(AB)\}'

=(AB)'(B')'---[since (AB)'=B'A']

=B'A'B---[(B')'=B]

=B'(A'B)

=B'(AB)---[From (1)]

Therefore,

(B'AB)'=B'AB

Thus, if A is symmetric matrix, thenB'AB is a symmetric matrix.

Now, we suppose that A is a skew symmetric matrix, then

A'=-A---(2)

Consider,

(B'AB)'=\{B'(AB)\}'

=(AB)'(B')'---[since (AB)'=B'A']

=B'A'B---[(B')'=B]

=B'(A'B)

=B'(-AB)---[From (2)]

=-B'AB

Therefore

(B'AB)'=-B'AB

Thus, if A is a skew symmetric matrix, then B'AB is a skew symmetric matrix.

Hence, ifA is symmetric or skew symmetric matrix, then B'AB is symmetric or skew

symmetric accordingly.

Question 6: Find the values of x,y,z if the matrixA=\begin{bmatrix}0&2y&z\\x&y&-z\\x&-y&z\end{bmatrix} satisfy the equation A'A=I

Solution: It is given that A=\begin{bmatrix}0&2y&z\\x&y&-z\\x&-y&z\end{bmatrix}

Therefore,

A'=\begin{bmatrix}0&x&x\\2y&y&-y\\z&-z&z\end{bmatrix}
Now,

A'A=I

Hence,

\Rightarrow \begin{bmatrix}0&x&x\\2y&y&-y\\z&-z&z\end{bmatrix}\begin{bmatrix}0&2y&z\\x&y&-z\\x&-y&z\end{bmatrix}=\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}

\Rightarrow \begin{bmatrix}0+x^2+x^2&0+xy-xy&0-xz+xz\\0+xy-xy&4y^2+y^2+y^2&2yz-yz-yz\\0-xz+xz&2yz-yz-yz&z^2+z^2+z^2\end{bmatrix}=\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}

\Rightarrow \begin{bmatrix}2x^2&0&0\\0&6y^2&0\\0&0&3z^2\end{bmatrix}=\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}

On comparing the corresponding elements, we have:

2x^2=1

\Rightarrow x=\pm\frac{1}{\sqrt2}

6y^2=1

\Rightarrow y=\pm\frac{1}{\sqrt6}

3z^2=1

\Rightarrow z=\pm\frac{1}{\sqrt3}
Hence,
x=\pm\frac{1}{\sqrt2},y=\pm\frac{1}{\sqrt6} and z=\pm\frac{1}{\sqrt3}

Question 7:For what values of x:\begin{bmatrix}1&2&1\end{bmatrix}\begin{bmatrix}1&2&0\\2&0&1\\1&0&2\end{bmatrix}\begin{bmatrix}0\\2\\x\end{bmatrix}=0 ?

Solution: We have:

\begin{bmatrix}1&2&1\end{bmatrix}\begin{bmatrix}1&2&0\\2&0&1\\1&0&2\end{bmatrix}\begin{bmatrix}0\\2\\x\end{bmatrix}=0

\Rightarrow \begin{bmatrix}1+4+1&2+0+0&0+2+2\end{bmatrix}\begin{bmatrix}0\\2\\x\end{bmatrix}=0

\Rightarrow \begin{bmatrix}6&2&4\end{bmatrix}\begin{bmatrix}0\\2\\x\end{bmatrix}=0

\Rightarrow \begin{bmatrix}6(0)+2(2)+4x\end{bmatrix}=0

\Rightarrow 4+4x=0

\Rightarrow 4x=-4

\Rightarrow x=-1

Thus, the required value of x=-1.

Question 8: If A=\begin{bmatrix}3&1\\-1&2\end{bmatrix}, show that A^2-5A+7I=0

Solution :  It is given that A=\begin{bmatrix}3&1\\-1&2\end{bmatrix}

Therefore,

A^2=AA

=\begin{bmatrix}3&1\\-1&2\end{bmatrix}\begin{bmatrix}3&1\\-1&2\end{bmatrix}

=\begin{bmatrix}3(3)+1(-1)&3(1)+1(2)\\-1(3)+2(-1)&-1(1)+2(2)\end{bmatrix}

=\begin{bmatrix}8&5\\-5&3\end{bmatrix}

Now,

LHS=A^2-5A+7I

=\begin{bmatrix}8&5\\-5&3\end{bmatrix}-5\begin{bmatrix}3&1\\-1&2\end{bmatrix}+7\begin{bmatrix}1&0\\0&1\end{bmatrix}

=\begin{bmatrix}8&5\\-5&3\end{bmatrix}-\begin{bmatrix}15&5\\-5&10\end{bmatrix}+\begin{bmatrix}7&0\\0&7\end{bmatrix}

=\begin{bmatrix}-7&0\\0&-7\end{bmatrix}+\begin{bmatrix}7&0\\0&7\end{bmatrix}

=\begin{bmatrix}0&0\\0&0\end{bmatrix}

=RHS

Thus,A^2-5A+7I=0

Question 9: Find , if \begin{bmatrix}x&-5&-1\end{bmatrix}\begin{bmatrix}1&0&2\\0&2&1\\2&0&3\end{bmatrix}\begin{bmatrix}x\\4\\1\end{bmatrix}=0

Solution:  \begin{bmatrix}x&-5&-1\end{bmatrix}\begin{bmatrix}1&0&2\\0&2&1\\2&0&3\end{bmatrix}\begin{bmatrix}x\\4\\1\end{bmatrix}=0

Hence,

\begin{bmatrix}x+0-2&0-10+0&2x-5-3\end{bmatrix}\begin{bmatrix}x\\4\\1\end{bmatrix}=0

\Rightarrow \begin{bmatrix}x-2&-10&2x-8\end{bmatrix}\begin{bmatrix}x\\4\\1\end{bmatrix}=0

\Rightarrow \begin{bmatrix}x(x-2)-40+2x-8\end{bmatrix}=0

\Rightarrow x^2-2x+2x-48=0

x^2=48

\Rightarrow x=\pm4\sqrt3

Question 10: A manufacturer produces three products x,y,z which he sells in two markets. Annual sales are
indicated below:
Market Products

product  x           y              z

I         10000     2000     18000
II        6000     20000      8000

(a) If unit sale prices of x,y and z are ₹ 2.50 ,₹ 1.50and₹ 1.00, respectively, find the total
revenue in each market with the help of matrix algebra.

(b) If the unit costs of the above three commodities are ₹2 , ₹1 and 50paise respectively.
Find the gross profit.

Solution: (a) The unit sale prices of x,yand z are ₹2.50 , ₹1.50 and ₹ 1.00respectively.

Consequently, the total revenue in market I can be represented in the form of a matrix as:

Product matrix:\begin{bmatrix}10000&2000&18000\\6000&20000&8000\end{bmatrix}
Sale price matirx: \begin{bmatrix}2.50\\1.50\\1.00\end{bmatrix}

The total revenue=\begin{bmatrix}10000&2000&18000\\6000&20000&8000\end{bmatrix}\begin{bmatrix}2.50\\1.50\\1.00\end{bmatrix}

=\begin{bmatrix}10000(2.50)+2000(1.50)+18000(1.00)\\6000(2.50)+20000(1.50)+8000(1.00)\end{bmatrix}

=\begin{bmatrix}25000+3000+18000\\15000+30000+8000\end{bmatrix}

=\begin{bmatrix}46000\\53000\end{bmatrix}

Total revenue in I market= ₹46000

Total revenue in II market=₹53000

(b) The unit costs of x,y and z are ₹2.00 , ₹1.00 and 50 paise respectively.

Consequently,

total cost price of each market:

=\begin{bmatrix}10000&2000&18000\\6000&20000&8000\end{bmatrix}\begin{bmatrix}2.00\\1.00\\0.50\end{bmatrix}

=\begin{bmatrix}10000(2.00)+2000(1.00)+18000(0.50)\\6000(2.00)+20000(1.00)+8000(0.50)\end{bmatrix}

=\begin{bmatrix}20000+2000+9000\\12000+20000+4000\end{bmatrix}

=\begin{bmatrix}31000\\36000\end{bmatrix}

Profit: =\begin{bmatrix}46000\\53000\end{bmatrix}-\begin{bmatrix}31000\\36000\end{bmatrix}

=\begin{bmatrix}15000\\17000\end{bmatrix}

Thus, the gross profit in market I is ₹ 15000and in market II is ₹ 17000 .

Question 11: Find the matrixX so that X\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix}=\begin{bmatrix}-7&-8&-9\\2&4&6\end{bmatrix}

Solution:  X\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix}=\begin{bmatrix}-7&-8&-9\\2&4&6\end{bmatrix}

The matrix given on the R.H.S. of the equation is a 2\times3

matrix and the one given on the L.H.S.of the equation is a 2\times3 matrix.

now, Let X=\begin{bmatrix}a&c\\b&d\end{bmatrix}
Therefore,

\begin{bmatrix}a&c\\b&d\end{bmatrix}\begin{bmatrix}1&2&3\\4&5&6\end{bmatrix}=\begin{bmatrix}-7&-8&-9\\2&4&6\end{bmatrix}

\Rightarrow\begin{bmatrix}a+4c&2a+5c&3a+6c\\b+4d&2b+5d&3b+6d\end{bmatrix}=\begin{bmatrix}-7&-8&-9\\2&4&6\end{bmatrix}

Equating the corresponding elements of the two matrices,
we have:

a+4c=7,2a+5c=-8,3a+6c=-9

b+4d=2,2b+5d=4,3b+6d=6

Now,

solving a+4c=7 and 2a+5c=-8
we get ,

a=1,c=-2

again solving

b+4d=2 and 2b+5d=4

We get,

b=2,d=0

Hence the required matrix X=\begin{bmatrix}1&-2\\2&0\end{bmatrix}

Question 12: If A and B are square matrices of the same order such that AB=BA,then prove by induction that AB^n=B^nA.Further prove that (AB)^n= A^nB^n for all n\in N

Solution: Given A and B are square matrices of the same order such that AB=BA.

To prove:P(n):AB^n=B^nA,n\in N

For n=1,we have:

P(1):AB=BA [Given].

therefore, the result is true for n=1.

Let the result is true for n=k

P(k):AB^k=B^kA---(1)

Now, we prove that the result is true for n=k+1

P(k+1):AB^{k+1}=B^{k+1}A

LHS=AB^{k+1}

=AB^KB

=(B^kA)B\space ---[By 1]

=B^k(AB)----[Associative \ law]

=B^k(BA)\ [AB=BA]

=(B^kB)A\ [Associative\ law]

=B^{k+1}A

Therefore, the result is true for n=k+1 .

Now, we have to prove that(AB)^n=A^nB^n For all n\in N

For n=1 , we have:

P(1):(AB)^1=A^1B^1=AB

Therefore, the result is true for n=1 .

Let the result be true for n=k.

P(k):(AB)^k=A^kB^k---(2)

Now, we prove that the result is true for n=k+1.

P(k+1):(AB)^{k+1}=A^{k+1}B^{k+1}

LHS=(AB)^{k+1}

=(AB)^{k}(AB)

=(A^kB^k)(AB)---[By 2]

=A^k(B^kA)A \ [Associative \ law]

=A^k(AB^k)B \ [AB^n=B^nA]

=(A^kA)(B^kB) \ [Associative \ law]

=A^{k+1}B^{k+1}

Therefore, the result is true for n=k+1 .

Question 13: If A=\begin{bmatrix}\alpha&\beta\\ \gamma&\alpha\end{bmatrix} is such that A^n=I then,

(A)1+\alpha^2+\beta\gamma=0

(B)1-\alpha^2+\beta\gamma=0

(C)1-\alpha^2-\beta\gamma=0

(D) 1-\alpha^2-\beta\gamma=0

Solution: It is given that A=\begin{bmatrix}\alpha&\beta\\ \gamma&\alpha\end{bmatrix}
Therefore,

A^2=AA

=\begin{bmatrix}\alpha&\beta\\ \gamma&\alpha\end{bmatrix}\begin{bmatrix}\alpha&\beta\\ \gamma&\alpha\end{bmatrix}

=\begin{bmatrix}\alpha^2+\beta\gamma&\alpha\beta-\beta\alpha\\ \alpha\gamma-\alpha\gamma&\beta\gamma+\alpha^2\end{bmatrix}

=\begin{bmatrix}\alpha^2+\beta\gamma&0\\ 0&\beta\gamma+\alpha^2\end{bmatrix}
Now,A^2=I
Hence,

=\begin{bmatrix}\alpha^2+\beta\gamma&0\\ 0&\beta\gamma+\alpha^2\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}

On comparing the corresponding elements, we have:

\alpha^2+\beta\gamma=1

\Rightarrow\alpha^2+\beta\gamma-1=0

\Rightarrow1-\alpha^2-\beta\gamma=0
Thus, the correct option is C.

Question 14: If the matrix A is both symmetric and skew symmetric, then

(A) A is a diagonal matrix

(B) A is a zero matrix

(C)A is a square matrix

(D) None of these

Solution: If the matrix A is both symmetric and skew symmetric, then

A'=A and A'=A

Hence,

\Rightarrow A=-A

\Rightarrow A+A=0

\Rightarrow 2A=0

\Rightarrow A=0

Therefore, A is a zero matrix.

Thus, the correct option is B.

Question 15: IfA is a square matrix such that A^2=A, then (I+A)^3-7A is equal to

(A)A   (B) I-A   (C)I   (D)3A

Solution: It is given that A is a square matrix such that A^2=A.

Now,

(I+A)^3-7A=I^3+A^3+3I^2A+3A^2I-7A

=I+A^2A+3A+3A^2-7A

=I+AA+3A+3A-7I \ [A^2=A]

=I+A^2+6A-7A

=I+A+6A-7A

=I

Thus, the correct option is C.


Class 12 matrix multiple choice question

Case study problem matrix 2
Amit, Biraj and chirag were giventhe task of creating a square matrix of order 2

Leave a Comment