Class 12 ncert solution math exercise 2.1

     EXERCISE 2.1

Find the principal values of the following:(Class 12 ncert solution math exercise 2.1)

Question 1: \sin^{-1}(\frac{-1}{2})

Solution : Principal value of

\sin^{-1}(\frac{-1}{2})= -\frac{\pi}{6}\in[-\pi/2,\pi/2]

Question 2: \cos^{-1}(\frac{\sqrt{3}}{2})

Solution : Principal value of

\cos^{-1}(\frac{\sqrt{3}}{2})= \pi/6 \in[0, \pi]

Question 3: \operatorname{cosec}^{-1}(2)

Solution: Principal value of

\operatorname{cosec}^{-1}(2)= \pi/6\in[-pi/2, \pi/2]-\{0\}

Question 4: \tan^{-1}(-\sqrt{3})

Solution: Principal value of

\tan^{-1}(-\sqrt{3}) = -\pi/3\in(-\pi/2,\pi/2)

Question 5: \cos^{-1}(-\frac{1}{2})

Solution :Principal value of

\cos^{-1}(-\frac{1}{2})= \pi-\frac{\pi}{3}

= 2\pi/3 \in [0,\pi]

Question 6: \tan^{-1}(-1)

Solution: Principal value of

\tan^{-1}(-1) = -\pi/4\in(-\pi/2, \pi/2)

Question 7: \sec^{-1}(\frac{2}{\sqrt{3}})

Solution : Principal value of

\sec^{-1}(\frac{2}{\sqrt{3}})=\pi/6\in[0, \pi]-\{\pi/2\}

Question 8: \cot^{-1}(\sqrt{3})

Solution: Principal value of

\cot^{-1}(\sqrt{3}) = \pi/6\in(0,\pi)

Question 9: \cos^{-1}(-\frac{1}{\sqrt{2}})

Solution: Principal value of

\cos^{-1}(-\frac{1}{\sqrt{2}}) = \pi - \pi/4

= 3\pi/4\in (0, \pi)

Question 10: \operatorname{cosec}^{-1}(-\sqrt{2})

Solution: Principal value of

\operatorname{cosec}^{-1}(-\sqrt{2})=-\pi/4 \in [-\pi/2,\pi/2]-\{0\}

Find the values of the following:

Question 11: \tan^{-1}(1)+\cos^{-1}(-1/2)+\sin^{-1}(-1/2)

Solution: Since
\tan^{-1}(1) = \pi/4\in(-\pi/2,\pi/2)

\cos^{-1}(-1/2)= \pi - \pi/3

= 2\pi/3 \in[0,\pi]

\sin^{-1}(-1/2)=-\pi/6\in[-\pi/2,\pi/2]

Hence

\tan^{-1}(1) = \pi/4+2\pi/3-\pi/6

= \frac{3\pi+8\pi-2\pi}{12}

= \frac{9\pi}{12}

=\frac{3\pi}{12}

Question 12: \cos^{-1}(1/2)+2\sin^{-1}(1/2)

Solution : Since,

\cos^{-1}(1/2)= \pi/3\in[0, \pi]

\sin^{-1}(1/2)= \pi/6\in[-\pi/2, \pi/2]

Hence,
\cos^{-1}(1/2)+2\sin^{-1}(1/2) = \pi/3+2\pi/6

= 2\pi/3

Question 13: Find the value of \sin ^{-1} x=y, then

(A) 0 \leq y \leq \pi

(B) -\frac{\pi}{2} \leq y \leq \frac{\pi}{2}

(C) 0 \leq y \leq \pi

(D) -\frac{\pi}{2}<y<\frac{\pi}{2}

Answer: (B).

Question 14: Find the value of \tan ^{-1} \sqrt{3}-\sec ^{-1}(-2) is equal to

(A) 0

(B) -\frac{\pi}{3}

(C) \frac{\pi}{3}

(D) \frac{2 \pi}{3}

Answer (B)

Since, \tan ^{-1}(\sqrt{3})=\pi/3\in (-\pi/2, \pi/2)
Hence,

\sec^{-1}(-2)=2\pi/3\in[0,\pi]-\{\pi/2\}

Hence,

\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)= \pi/3-2\pi/3

= -\pi/3.


class 12 inverse trigonometric functions multiple choice

 

Case study inverse trigonometry 2
Two men on either side of a temple 30 metres high observes

Leave a Comment