Ex 7.10 integration ncert maths solution class 12

Exercise 7.10(Integration)

Evaluate the integrals in Exercises 1 to 8 using substitution.(Ex 7.10 integration ncert maths solution class 12)

Ex 7.10 integration ncert maths solution class 12

Question 1: \int_0^1 \frac{x}{x^2+1} d x

Solution: Let I=\int_0^1 \frac{x}{x^2+1} d x

Let x^2+1=t \Rightarrow \quad 2 x d x=d t

When x=0, t=1 and when x=1, t=2

I=\int_0^1 \frac{x}{x^2+1} d x

=\frac{1}{2} \int_1^2 \frac{d t}{t}

=\frac{1}{2}[\log |t|]_1^2

=\frac{1}{2}[\log 2-\log 1]=\frac{1}{2} \log 2

Question 2: \int_0^{\frac{\pi}{2}} \sqrt{\sin \phi} \cos ^5 \phi d \phi

Solution: Let I=\int_0^{\frac{\pi}{2}} \sqrt{\sin \phi} \cos ^5 \phi d \phi

=\int_0^{\frac{\pi}{2}} \sqrt{\sin \phi} \cos ^4 \phi \cos \phi d \phi

Let \sin \phi=t \Rightarrow \quad \cos \phi d \phi=d t

When \phi=0, t=0 and when \phi=\frac{\pi}{2}, t=1

I=\int_0^1 \sqrt{t}\left(1-t^2\right)^2 d t

=\int_0^1 t^{\frac{1}{2}}\left(1+t^4-2 t^2\right) d t

=\int_0^1\left[t^{\frac{1}{2}}+t^{\frac{9}{2}}-2 t^{\frac{5}{2}}\right] d t

=\left[\frac{t^{\frac{3}{2}}}{\frac{3}{2}}+\frac{t^{\frac{11}{2}}}{\frac{11}{2}}-\frac{t^{\frac{7}{2}}}{\frac{7}{2}}\right]_0^1

=\frac{2}{3}+\frac{2}{11}-\frac{4}{7}

=\frac{154+42-132}{231}=\frac{64}{231}

Question 3: \int_0^1 \sin ^{-1}\left(\frac{2 x}{1+x^2}\right) d x

Solution: I=\int_0^1 \sin ^{-1}\left(\frac{2 x}{1+x^2}\right) d x

Let x=\tan \theta \Rightarrow d x=\sec ^2 \theta d \theta

When x=0, \theta=0 and when x=1, \theta=\frac{\pi}{4}

I=2\left[\theta \int \sec ^2 \theta d \theta \int\left\{\left(\frac{d}{d x} \theta\right) \int \sec ^2 \theta d \theta\right\} d \theta\right]_0^{\frac{\pi}{4}}

=2\left[\theta \tan \theta-\int \tan \theta d \theta\right]_0^{\frac{\pi}{4}}

=2\left[\theta \tan \theta-\log |\cos \theta|_0^{\frac{\pi}{4}}\right]

=2\left[\left[\frac{\pi}{4} \tan \frac{\pi}{4}-\log \left|\cos \frac{\pi}{4}\right|-\log |\cos 0|\right]\right.

=2\left[\frac{\pi}{4}+\log \left(\frac{1}{\sqrt{2}}\right)-\log 1\right]

=2\left[\frac{\pi}{4}-\frac{1}{2} \log 2\right]=\frac{\pi}{2}-\log 2

Question 4 :\int_0^2 x \sqrt{x+2}\left(P u t x+2=t^2\right.

Solution: Let I=\int_0^2 x \sqrt{x+2} d x

Let x+2=t^2 \Rightarrow d x=2 t d t

When x=0, t=\sqrt{2} and when x=2, t=2

I =\int_0^2 x \sqrt{x+2} d x

=\int_{\sqrt{2}}^t\left(t^2-2\right) \sqrt{t^2} 2 t d t

=2 \int_{\sqrt{2}}^2\left(t^2-2\right) t^2 d t

=2 \int_{\sqrt{2}}^2\left(t^4-2 t^2\right) d t

=2\left[\frac{t^5}{5}-\frac{2 t^3}{3}\right]_{\sqrt{2}}^2

=2\left[\frac{32}{5}-\frac{16}{3}-\frac{4 \sqrt{2}}{5}+\frac{4 \sqrt{2}}{3}\right]

=2\left[\frac{96-80-12 \sqrt{2}+20 \sqrt{2}}{15}\right]

=2\left[\frac{16+8 \sqrt{2}}{15}\right]=\frac{16(2+\sqrt{2})}{15}

=\frac{16 \sqrt{2}(\sqrt{2}+1)}{15}

Question 5: \int_0^{\frac{\pi}{2}} \frac{\sin x}{1+\cos ^2 x} d x

Solution : I=\int_0^{\frac{\pi}{2}} \frac{\sin x}{1+\cos ^2 x} d x

Let \cos x=t \Rightarrow-\sin x d x=d t

When x=0, t=1 and when x=\frac{\pi}{2}, t=0

I=\int_0^{\frac{\pi}{2}} \frac{\sin x}{1+\cos ^2 x} d x=-\int_1^0 \frac{d t}{1+t^2}

=-\left[\tan ^{-1} t\right]_1^0

=-\left[\tan ^{-1} 0-\tan ^{-1} 1\right]

=-\left[-\frac{\pi}{4}\right]=\frac{\pi}{4}

Question 6: \int_0^2 \frac{d x}{x+4-x^2}

Solution: Let I=\int_0^2 \frac{d t}{x+4-x^2}

=\int_0^2 \frac{d x}{-\left(x^2-x-4\right)}

=\int_0^2 \frac{d x}{-\left(x^2-x+\frac{1}{4}-\frac{1}{4}-4\right)}

=\int_0^2 \frac{d x}{\left[-\left(x-\frac{1}{2}\right)^2-\frac{17}{4}\right]}

=\int_0^2 \frac{d x}{\left[\left(\frac{\sqrt{17}}{2}\right)^2-\left(x-\frac{1}{2}\right)^2\right]}

Let x-\frac{1}{2}=t \quad \Rightarrow d x=d t

When x=0, t=-\frac{1}{2} and when x=2, t=\frac{3}{2}

I=\int_4^2 \frac{d x}{\left(\frac{\sqrt{17}}{2}\right)^2-\left(x-\frac{1}{2}\right)^2}

=\int_{-\frac{1}{2}}^\frac{3}{2}\frac{1}{\left(\frac{\sqrt{17}}{2}\right)^2-t^2}dx

=\left[\frac{1}{2\left(\frac{\sqrt{17}}{2}\right)} \log \left(\frac{\frac{\sqrt{17}}{2}+t}{\frac{\sqrt{17}}{2}-t}\right)\right]_{-\frac{1}{2}}^{\frac{3}{2}}

=\frac{1}{\sqrt{17}}\left[\log \frac{\frac{\sqrt{17}}{2}+\frac{3}{2}}{\frac{\sqrt{17}}{2}-\frac{3}{2}}-\frac{\log \frac{\sqrt{17}}{2}-\frac{1}{2}}{\log \frac{\sqrt{17}}{2}+\frac{1}{2}}\right]

=\frac{1}{\sqrt{17}}\left[\log \frac{\sqrt{17}+3}{\sqrt{17}-3}-\log \frac{\sqrt{17}-1}{\sqrt{17}+1}\right]

=\frac{1}{\sqrt{17}} \log \frac{\sqrt{17}+3}{\sqrt{17}-3} \times \frac{\sqrt{17}+1}{\sqrt{17}-1}

=\frac{1}{\sqrt{17}} \log \left[\frac{17+3+4 \sqrt{17}}{17+3-4 \sqrt{17}}\right]

=\frac{1}{\sqrt{17}} \log \left[\frac{20+4 \sqrt{17}}{20-4 \sqrt{17}}\right]

=\frac{1}{\sqrt{17}} \log \left(\frac{5+\sqrt{17}}{5-\sqrt{17}}\right)

=\frac{1}{\sqrt{17}} \log \left[\frac{(5+\sqrt{17})(5-\sqrt{17})}{25-17}\right]

=\frac{1}{\sqrt{17}} \log \left[\frac{25+17+10 \sqrt{17}}{8}\right]

=\frac{1}{\sqrt{17}} \log \left[\frac{42+10 \sqrt{17}}{8}\right]

=\frac{1}{\sqrt{17}} \log \left[\frac{21+5 \sqrt{17}}{4}\right]

Question 7: \int_{-1}^1 \frac{d x}{x^2+2 x+5}

Solution :Let I=\int_{-1}^1 \frac{d x}{x^2+2 x+5}

=\int_{-1}^1 \frac{d x}{\left(x^2+2 x+1\right)+4}=\int_{-1}^1 \frac{d x}{(x+1)^2+(2)^2}

Let x+1=t  \Rightarrow d x=d t

When x=-1, t=0 and when x=1, t=2

I=\int_{-1}^1 \frac{d x}{(x+1)^2+(2)^2}

=\int_0^2 \frac{d t}{(t)^2+(2)^2}

=\left[\frac{1}{2} \tan ^{-1} \frac{t}{2}\right]_0^2

=\frac{1}{2} \tan ^{-1} 1-\frac{1}{2} \tan ^{-1} 0

=\frac{1}{2}\left(\frac{\pi}{4}\right)=\frac{\pi}{8}

Question 8: \int_1^2\left(\frac{1}{x}-\frac{1}{2 x^2}\right) e^{2 x} d x

Solution : Let I=\int_1^2\left(\frac{1}{x}-\frac{1}{(2 x)^2}\right) e^{2 x} d x

Let 2 x=t  \Rightarrow 2 d x=d t

When x=1, t=2 and when x=2, t=4

I=\int_2^1\left(\frac{1}{x}-\frac{1}{(t)^2}\right) e^t d x

=\frac{1}{2} \int_2^1\left(\frac{2}{t}-\frac{2}{t^2}\right) e^t d t

=\int_2^1\left(\frac{1}{t}-\frac{1}{t^2}\right) e^t d t

If \frac{1}{t}=f(t) then, f^{\prime}(t)=-\frac{1}{t^2}

I=\int_2^4\left(\frac{1}{t}-\frac{1}{t^2}\right) e^t d t=\int_2^4 e^t\left[f(t)+f^{\prime}(t)\right] d t

=\left[e^t f(t)\right]_2^4

=\left[e^t \cdot \frac{2}{t}\right]_2^4

=\left[\frac{e^t}{t}\right]_2^4

=\frac{e^4}{4}-\frac{e^2}{2}

=\frac{e^2\left(e^2-2\right)}{4}

Choose the correct answer in Exercises 9 and 10.

Question 9: The value of the integral \int_{\frac{1}{3}}^1 \frac{\left(x-x^3\right)^{\frac{1}{3}}}{x^4} d x is

(A) 6

(B) 0

(C) 3

(D) 4

Solution: The correct answer is (B).

Let I=\int_{\frac{1}{3}}^1 \frac{\left(x-x^3\right)^{\frac{1}{3}}}{x^4}

Let x=\sin \theta \quad \Rightarrow d x=\cos \theta d \theta

When x=\frac{1}{3}, \theta=\sin ^{-1}\left(\frac{1}{3}\right) and when x=1, \quad \theta=\frac{\pi}{2}

I=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} \frac{\left(\sin \theta-\sin ^3 \theta\right)^{\frac{1}{3}}}{\sin ^4 \theta} \cos \theta d \theta

=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} \frac{(\sin \theta)^{\frac{1}{3}}\left(1-\sin ^2 \theta\right)^{\frac{1}{3}}}{\sin ^4 \theta} \cos \theta d \theta

=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} \frac{(\sin \theta)^{\frac{1}{3}}(\cos \theta)^{\frac{2}{3}}}{\sin ^2 \theta \sin ^2 \theta} \cos \theta d \theta

=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}} \frac{(\cos \theta)^{\frac{5}{3}}}{(\sin \theta)^{\frac{5}{3}}} \operatorname{cosec}^2 \theta d \theta

=\int_{\sin ^{-1}\left(\frac{1}{3}\right)}^{\frac{\pi}{2}}(\cot \theta)^{\frac{5}{3}} \operatorname{cosec}^2 \theta d \theta

Let \cot \theta=t \Rightarrow-\operatorname{cosec}^2 \theta d \theta=d t

When \theta=\sin ^{-1}\left(\frac{1}{3}\right), t=2 \sqrt{2} and when \theta=\frac{\pi}{2}, t=0

I=\int_{2 \sqrt{2}}^0(t)^{\frac{5}{3}} d t=-\left[\frac{3}{8}(t)^{\frac{8}{3}}\right]_{2 \sqrt{2}}^0=-\frac{3}{8}\left[(t)^{\frac{8}{3}}\right]_{2 \sqrt{2}}^0=-\frac{3}{8}\left[(-2 \sqrt{2})^{\frac{8}{3}}\right]

=\frac{3}{8}\left[(\sqrt{8})^{\frac{8}{3}}\right]

=\frac{3}{8}\left[(8)^{\frac{4}{3}}\right]

=\frac{3}{8}[16]=3 \times 2=6

Hence, the correct answer is A.

Question 10: If f(x)=\int_0^x t \sin t d t, then f^{\prime}(x) is

(A) \cos x+x \sin x

(B) x \sin x

(C) x \cos x

(D) \sin x+x \cos x

Solution: The correct answer is (B)

Let f(x)=\int_0^x t \sin t d t,

f(x)=t \int_0^x \sin t d t-\int_0^x\left\{\left(\frac{d}{d t} t\right) \int \sin t d t\right\} d t

=[t(-\cos t)]_0^x-\int_0^x(-\cos t) d t

\Rightarrow f(x)=[-t \cos t+\sin t)]_0^x=-x \cos x+\sin x

\Rightarrow f^{\prime}(x)=-[\{x(-\sin x)\}+\cos x]+\cos x

=x \sin x-\cos x+\cos x

=x \sin x

Hence, the correct answer is (B).

Ex 7.9 integration ncert maths solution class 12                Ex 7.6 integration ncert maths solution class 12

Leave a Comment