Find the equations of the diagonals of the parallelogram

Question:-

Find the equations of the diagonals of the parallelogram PQRS whose vertices are P(4, 2, -6), Q(5, -3, 1), R(12, 4, 5) and S(11, 9, -2). Use these equations to find the point of intersection of diagonals.

Solution:-

Find the equations of the diagonals of the parallelogram

Vertices of parallelogram PQRS  are P(4, 2, -6), Q(5, -3, 1), R(12, 4, 5) and S(11, 9, -2).

Equation of diagonal PR where P(4, 2, -6) and R(12, 4, 5)

\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}=\frac{z-z_1}{z_2-z_1}

\Rightarrow \frac{x-4}{12-4}=\frac{y-2}{4-2}=\frac{z+6}{5+6}

\Rightarrow \frac{x-4}{8}=\frac{y-2}{2}=\frac{z+6}{11}--(i)

Eq of diagonal QS where Q(5, -3, 1) and S(11, 9, -2).

\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}=\frac{z-z_1}{z_2-z_1}

\Rightarrow \frac{x-5}{11-5}=\frac{y+3}{9+3}=\frac{z-1}{-2-1}

\Rightarrow \frac{x-5}{6}=\frac{y+3}{12}=\frac{z-1}{-3}--(ii)

For point of intersection of PR and QS solving (i) and (ii)

\frac{x-4}{8}=\frac{y-2}{2}=\frac{z+6}{11}=m(let)

\Rightarrow \frac{x-4}{8}=m,\frac{y-2}{2}=m,\frac{z+6}{11}=m

\Rightarrow x = 8m+4, y=2m+2,z=11m-6

\Rightarrow \frac{x-5}{6}=\frac{y+3}{12}=\frac{z-1}{-3}=n(let)

\Rightarrow \frac{x-5}{6}=n,\frac{y+3}{12}=n,\frac{z-1}{-3}=n

x = 6n+5,y=12n-3,z=-3n+1

For intersection point equating the value of x, y, z

8m+4=6n+5

\Rightarrow 8m-6n=1--(iii)

2m+2=12n-3

\Rightarrow 2m-12n=-5--(iv)

11m-6=-3n+1

\Rightarrow 11m+3n=7--(v)

Solving (iii) and (iv)

8m-6n=1--(iii)

2m-12n=-5--(iv)

multiply 2 in (iii) and subtract (iv)

2(8m-6n)-(2m-12n)=2+5

\Rightarrow 16m-12n-2m+12n=7

\Rightarrow 14m = 7

\Rightarrow m = \frac{1}{2}

Putting in (iii)

8m-6n=1

\Rightarrow 8\times \frac{1}{2}-6n=1

\Rightarrow 4-6n = 1

\Rightarrow 6n = 3

\Rightarrow n = \frac{1}{2}

m=\frac{1}{2},n = \frac{1}{2}

Putting in (v)

2m-12n=-5--(iv)

L.H.S. = 2\times \frac{1}{2}-12\times \frac{1}{2}

=1-6=-5=R.H.S.

Putting the value of m or n

x = 8m+4, y=2m+2,z=11m-6

\Rightarrow x = 8\times \frac{1}{2}+4, y= 2\times \frac{1}{2}+2

z=11\times \frac{1}{2}-6

\Rightarrow x =8,y=3,z=-\frac{1}{2}

Thus point of intersection

O(8, 3, -\frac{1}{2})


Question: A line l passes through point (-1,3,-2) and is perpendicular to both the lines \frac{x}{1}=\frac{y}{2}=\frac{z}{3} and \frac{x+2}{-3}=\frac{y-1}{2}=\frac{z+1}{5}. Find the vector equation of the line l. Hence, obtain its distance from origin.

Solution: For solution click here

Case study three dimension geometry 1
The equation of motion of a missile are x = 3t, y = -4t, z = t where the time

gmath.in

Leave a Comment