Find the eqaaution of the line which intersect the lines

Question 1:-  Find the eqaaution of the line which intersect the lines \dfrac{x + 2}{1} = \dfrac{y - 3}{2} = \dfrac{z + 1}{4} and \dfrac{x - 1}{2} = \dfrac{y - 2}{3} = \dfrac{z - 3}{4} passes through the point (1, 1, 1)

Solution:- Let dr’s of the line (a, b, c) and Equation of line passes through the point P(1, 1, 1)

\dfrac{x - 1}{a} = \dfrac{y - 1}{b} = \dfrac{z - 1}{c} .  .  . (i)

Let line l_1: \dfrac{x + 2}{1} = \dfrac{y - 3}{2} = \dfrac{z + 1}{4} .  .  .(ii)

and lline l_2: \dfrac{x - 1}{2} = \dfrac{y - 2}{3} = \dfrac{z - 3}{4} .  .  .(iii)

Let point Q and R lies on the line l1 and l2

From line l_1 : \dfrac{x + 2}{1} = \dfrac{y - 3}{2} = \dfrac{z + 1}{4} = m

x = m – 2, y = 2m + 3, z = 4m – 1

point Q(m – 2, 2m + 3, 4m -1)

Dr’s of PQ (m -2 -1, 2m + 3 -1, 4m – 1 – 1)

⇒ (m -3, 2m + 2, 4m -2)

From line l_2 : \dfrac{x - 1}{2} = \dfrac{y - 2}{3} = \dfrac{z - 3}{4} = n

x = 2n + 1, y = 3n + 2, z = 4n + 3

R (2n +1 , 3n + 2, 4n + 3)

Dr’s of PR (2n +1 -1, 3n + 2 -1, 4n + 3 – 1)

⇒ (2n, 3n + 1, 4n + 2)

Since PQ and PR are parallel

\dfrac{m- 3}{2n} = \dfrac{2m + 2}{3n + 1} = \dfrac{4m -2}{4n + 2}

\dfrac{m- 3}{2n} = \dfrac{2m + 2}{3n + 1}

⇒ (m-3)(3n + 1) = 2n(2m + 2)

⇒ 3mn – 9n + m -3 = 4mn + 4n

⇒ m -13n = mn + 3   .   .  .  (iv)

Again \dfrac{2m + 2}{3n + 1} = \dfrac{4m -2}{4n + 2}

⇒ (2m+2)(4n + 2) = (4m -2)(3n + 1)

⇒ 8mn + 8n + 4m + 4 = 12mn +4m -6n -2

⇒ 8n + 6n + 6 = 4mn

⇒ 14n – 4 mn +6 =0

⇒ n(14 – 4m) = -6

⇒ n = -6/ (14-4m) .  .  .(v)

Solving eq (iv) and (v)

m -13[-6/(14-4m)] = m[-6/(14-4m)] + 3

\dfrac{m(14-4m) + 78}{14- 4m} =\dfrac{-6m + 3(14-4m)}{14-4m}

⇒ 14m -4m² + 78 = -6m + 42 -12m

⇒ -4m² + 32m + 36 = 0

Divide by -4

⇒ m² -8m – 9= 0

⇒ m² -9m + m -9 = 0

⇒ m(m – 9 ) + 1 (m – 9) = 0

⇒ (m – 9)(m +1) = 0

⇒ m = 9, -1

Taaking m= 9

Dr’s of the line

(m -3, 2m + 2, 4m -2)

(9 -3, 2(9) + 2, 4(9) -2)

⇒ (6, 20, 34)

Equation of line Passing through (1, 1, 1)

\dfrac{x - 1}{6} = \dfrac{y - 1}{20} = \dfrac{z - 1}{34}

\dfrac{x - 1}{3} = \dfrac{y - 1}{10} = \dfrac{z - 1}{17}

Other Three Dimensional Geometry Question

Question 2:-  Find the vector and cartesian equations of the line passing through the point (2 , 1, 3) and perpendicular to the lines \dfrac{x - 1}{1} = \dfrac{y - 2}{2} = \dfrac{z - 3}{3} and \dfrac{x}{-3} = \dfrac{y}{2} = \dfrac{z}{5}.

Solution:- See full solution

Question 3:- A line passing through the point A with position vector \vec{a} = 4\hat{i} + 2\hat{j} + 2\hat{k} is parallel to the vector \vec{b} = 2\hat{i} + 3\hat{j} + 6\hat{k}. Find the length of the perpendicular drawn on this line from a point P with position vector \vec{r_1} = \hat{i} + 2\hat{j} + 3\hat{k}.                        [CBSE Panchkula 2015]

Solution:- See full solution

Case Study

 

 

Leave a Comment