Evaluate int 0 to pi x cos x upon 1 plus cos square x

 

Question 2:

Evaluate: \displaystyle \int_0^{\pi} \frac{x\sin x}{1 + \cos^2x}dx

Solution:

 Let I= \displaystyle \int_0^{\pi} \frac{x\sin x}{1 + \cos^2x}dx ………….(i)

Using property

\int_0^a f(x) dx = \int_0^af(a - x) dx

I = \displaystyle \int_0^{\pi} \frac{(\pi-x)\sin (\pi-x)}{1 + \cos^2(\pi-x)}dx

I = \displaystyle \int_0^{\pi} \frac{(\pi-x)\sin x}{1 + \cos^2x}dx

\Rightarrow I = \displaystyle \int_0^{\pi} \frac{\pi\sin x}{1 + \cos^2x}dx- \int_0^{\pi} \frac{x\sin x}{1 + \cos^2x}dx

\Rightarrow I = \displaystyle \int_0^{\pi} \frac{\pi\sin x}{1 + \cos^2x}dx- I

\Rightarrow 2I = \pi \displaystyle \int_0^{\pi} \frac{\sin x}{1 + \cos^2x}dx……….(ii)

Put \cos x = t

\Rightarrow -\sin x = \frac{dt}{dx}

\Rightarrow dx = \frac{dt}{-\sin x}

New limits, when x = 0, t ⇒ 1 and x = π ⇒ t = -1

Putting in eq (ii)

\Rightarrow 2I = \pi \displaystyle \int_1^{-1} \frac{\sin x}{1 + (t)^2}\frac{dt}{-\sin x}

\Rightarrow 2I = -\pi  \displaystyle \int_1^{-1} \frac{dt}{1 + (t)^2}

\Rightarrow 2I = -\pi \displaystyle [\tan^{-1}t]_1^{-1}

\Rightarrow 2I = -\pi \displaystyle[\tan^{-1}(-1) -\tan^{-1}(1)]

\Rightarrow 2I = -\pi \displaystyle[\frac{-\pi}{4} - \frac{\pi}{4}]

\Rightarrow 2I = -\pi [-\frac{2\pi}{4}]

\Rightarrow 2I = \dfrac{\pi^2}{2}

\Rightarrow I = \dfrac{\pi^2}{4} 

See the last year paper class 12 Mathematics

cbse class 12 math paper 2024 set 2 series qss4r-4

Leave a Comment