Class 12 ncert solution math chapter 5 miscellaneous

 Chapter 5 Miscellaneous (differentiation )

Differentiate w.r.t. x the function in Exercises 1 to 11.(Class 12 ncert solution math chapter 5 miscellaneous)

Question 1: (3x^2 - 9x + 5)^9

Solution: Let y =(3x^2 - 9x + 5)^9

Differentiate with respect to x

\frac{dy}{dx}=\frac{d}{dx}(3x^2 - 9x + 5)^9

= 9(3x^2 - 9x + 5)^8\frac{d}{dx}(3x^2 - 9x + 5)

=9(3x^2 - 9x + 5)^8(6x-9)

=27(2x-3)(3x^2 - 9x + 5)^8

Question 2: \sin^3 x + \cos^6 x

Solution: Let y = \sin^3 x + \cos^6 x

Differentiate with respect to x

\frac{dy}{dx}=\frac{d}{dx}( \sin^3 x + \cos^6 x)

= 3\sin^2 x\frac{d}{dx}\sin x+6\cos^5 x\frac{d}{dx}\cos x

= 3\sin^2x\cos x+6\cos^5 x(-\sin x)

= 3\sin^2x\cos x-6\sin x\cos^5 x

= 3\sin x\cos x(\sin x-2\cos^4x)

Question 3: (5x)^{3\cos 2x}

Solution: Let y = (5x)^{3\cos 2x}

Taking ‘log’ both side

\log y=\log (5x)^{3\cos 2x}

\log y = 3\cos 2x\log 5x

\frac{d}{dx}\log y = 3\cos 2x\frac{d}{dx}\log 5x+3\log 5x\frac{d}{dx}\cos 2x

\Rightarrow \frac{1}{y}\frac{dy}{dx}= 3\cos 2x \frac{1}{5x}\frac{d}{dx}(5x)+3\log 5x(-2\sin 2x)

\Rightarrow \frac{dy}{dx}=y(3\cos 2x\frac{5}{5x}-6\log 5x \sin 2x)

\Rightarrow \frac{dy}{dx}= (5x)^{3\cos 2x}(\frac{3\cos 2x}{x}-6\log 5x.\sin 2x)

Question 4: \sin^{-1}(x\sqrt{x})

Solution: Let y = \sin^{-1}(x\sqrt{x})

Differentiate with respect to x

\frac{dy}{dx} = \frac{d}{dx}\sin^{-1}(x\sqrt{x})

=\frac{1}{\sqrt{1-(x\sqrt{x})^2}}\frac{d}{dx}x\sqrt{x}

=\frac{1}{\sqrt{1-(x)^3}}\frac{d}{dx}x^{3/2}

=\frac{1}{\sqrt{1-(x)^3}}\frac{3}{2}x^{1/2}

=\frac{3x^{1/2}}{2\sqrt{1-(x)^3}}

=\frac{3}{2}\sqrt{\frac{x}{1-x^3}}

Question 5: \frac{\cos{-1}\frac{x}{2}}{\sqrt{2x+7}}

Solution : Let y=\frac{\cos{-1}\frac{x}{2}}{\sqrt{2x+7}}

Differentiate with respect to x

\frac{dy}{dx}=\frac{d}{dx}\frac{\cos{-1}\frac{x}{2}}{\sqrt{2x+7}}

=\frac{\sqrt{2x+7}\frac{d}{dx}\cos^{-1}\frac{x}{2}-\cos^{-1}\frac{x}{2}\frac{d}{dx}\sqrt{2x+7}}{(\sqrt{2x+7})^2}

=\frac{-\sqrt{2x+7}.\frac{1}{\sqrt{1-(x/2)^2}}.\frac{1}{2}-\cos^{-1}(\frac{x}{2})\frac{1}{2\sqrt{2x+7}}.2}{2x+7}
=\frac{-\frac{2\sqrt{2x+7}}{2\sqrt{4-x^2}}-\frac{\cos^{-1}(x/2)}{\sqrt{2x+7}}}{2x+7}

=\frac{-\sqrt{2x+7}}{\sqrt{4-x^2}.(2x+7)}-\frac{\cos^{-1}x/2}{\sqrt{2x+7}(2x+7)}

=-\frac{1}{\sqrt{4-x^2}\sqrt{2x+7}}-\frac{\cos^{-1}x/2}{(2x+7)^{3/2}}

=-[\frac{1}{\sqrt{4-x^2}\sqrt{2x+7}}+\frac{\cos^{-1}x/2}{(2x+7)^{3/2}}]

Question6: \cot^{-1}\left[\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right],0<x<\frac{\pi}{2}

Solution: Let y=\cot^{-1}\left[\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right] --(i)

Then,

\left[\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right]=\left[\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right]\left[\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}+\sqrt{1-\sin x}}\right]

=\left[\frac{(\sqrt{1+\sin x}+\sqrt{1-\sin x})^2}{(\sqrt{1+\sin x})^2-(\sqrt{1-\sin x})^2}\right]

=\left[\frac{1+\sin x+1-\sin x+2\sqrt{1+\sin x}\sqrt{1-\sin x}}{1+\sin x-1+\sin x}\right]

=\left[\frac{2+2\sqrt{1-\sin^2x}}{2\sin x}\right]

=\frac{2(1+\cos x)}{2\sin x}

=\frac{2\cos^2\frac{x}{2}}{2\sin\frac{x}{2}.\cos\frac{x}{2}}

=\cot\frac{x}{2}

Therefore from equation (i)

y =\cot^{-1}(\cot \frac{x}{2})

\Rightarrow y =\frac{x}{2}

Differentiate with respect to x

\Rightarrow \frac{dy}{dx}= \frac{1}{2}

Question 7: (\log x)^{(\log x)},x>1

Solution: Let y=(\log x)^{(\log x)}

Taking log both side, we obtain

\log y=\log(\log x)^{(\log x)}

\Rightarrow \log y =\log x.\log(\log x)

Differentiating both sides with respect to x, we obtain

\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{d}{d x}[\log x \cdot \log (\log x)]

\Rightarrow \frac{1}{y} \frac{d y}{d x}=\log (\log x) \cdot \frac{d}{d x}(\log x)+\log x \cdot \frac{d}{d x}[\log (\log x)]

\Rightarrow \frac{d y}{d x}=y\left[\log (\log x) \cdot \frac{1}{x}+\log x \cdot \frac{1}{\log x} \cdot \frac{d}{d x}(\log x)\right]

\Rightarrow \frac{d y}{d x}=y\left[\frac{1}{x} \cdot \log (\log x)+\frac{1}{x}\right]

\Rightarrow \frac{d y}{d x}=(\log x)^{\log x}\left[\frac{1}{x}+\frac{\log (\log x)}{x}\right]

Question 8: \cos (a \cos x+b \sin x), for some constant a and b.

Solution: Let y=\cos (a \cos x+b \sin x)
Using chain rule, we get
\frac{d y}{d x} =\frac{d}{d x} \cos (a \cos x+b \sin x)

=-\sin (a \cos x+b \sin x) \cdot \frac{d}{d x}(a \cos x+b \sin x)

=-\sin (a \cos x+b \sin x) \cdot[a(-\sin x)+b \cos x]
=(a \sin x-b \cos x) \cdot \sin (a \cos x+b \sin x)

Question 9: (\sin x-\cos x)^{(\sin x-\cos x)}, \frac{\pi}{4}<x<\frac{3 \pi}{4}

Solution: Let y=(\sin x-\cos x)^{(\sin x-\cos x)}
Taking log on both the sides, we obtain

\log y =\log \left[(\sin x-\cos x)^{(\sin x-\cos x)}\right]

=(\sin x-\cos x) \log (\sin x-\cos x)

Differentiating both sides with respect to x, we obtain

\frac{1}{y} \frac{d y}{d x}=\frac{d}{d x}[(\sin x-\cos x) \log (\sin x-\cos x)]

\Rightarrow \frac{1}{y} \frac{d y}{d x}=\log (\sin x-\cos x) \cdot \frac{d}{d x}(\sin x-\cos x)+(\sin x-\cos x) \cdot \frac{d}{d x} \log (\sin x-\cos x)

\Rightarrow \frac{1}{y} \frac{d y}{d x}=\log (\sin x-\cos x) \cdot(\cos x+\sin x)+(\sin x-\cos x) \cdot \frac{1}{(\sin x-\cos x)} \cdot \frac{d}{d x}(\sin x-\cos x)

\Rightarrow \frac{d y}{d x}=(\sin x-\cos x)^{(\sin x-\cos x)}[(\cos x+\sin x) \cdot \log (\sin x-\cos x)+(\cos x+\sin x)]

\Rightarrow \frac{d y}{d x}=(\sin x-\cos x)^{(\sin x-\cos x)}(\cos x+\sin x)[1+\log (\sin x-\cos x)]

Question 10: Differentiate with respect to x the function x^x+x^a+a^x+a^a, for some fixed a>0 and x>0.
Solution: Let y=x^x+x^a+a^x+a^a
Also, let x^x=u, x^a=v, a^x=w and a^a=s
Therefore,
\Rightarrow y=u+v+w+s

\Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}+\frac{d w}{d x}+\frac{d s}{d x}

Now, u=x^x
Taking logarithm on both the sides, we obtain
\Rightarrow \log u=\log x^x

\Rightarrow \log u=x \log x

Differentiating both sides with respect to x, we obtain

\frac{1}{u} \frac{d u}{d x} =\log x \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}(\log x)

\Rightarrow \frac{d u}{d x} =u\left[\log x \cdot 1+x \cdot \frac{1}{x}\right]

=x^x[\log x+1]=x^x(1+\log x)
Now, v=x^a
Hence,
\frac{d v}{d x} & =\frac{d}{d x}\left(x^a\right)

=a x^{a-1}

Now, w=a^x

Taking logarithm on both the sides, we obtain
\Rightarrow \log w=\log a^x

\Rightarrow \log w=x \log a

Differentiating both sides with respect to x, we obtain

\frac{1}{w} \frac{d w}{d x} =\log a \cdot \frac{d}{d x}(x)

\Rightarrow \frac{d w}{d x} =w \log a
=a^x \log a

Now, s=a^a
Since a is constant, a^a is also a constant.
Hence,
\frac{d s}{d x}=0
From (1), (2), (3), (4) and (5), we obtain

\frac{d y}{d x} =x^x(1+\log x)+a x^{a-1}+a^x \log a+0

=x^x(1+\log x)+a x^{a-1}+a^x \log a

Question 11: x^{x^2-3}+(x-3)^{x^2}, for x>3.

Solution: Let y=x^{x^2-3}+(x-3)^{x^2}
Also, let u=x^{x^2-3} and v=(x-3)^{x^2} Therefore,
y=u+v
\Rightarrow \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}

Now, u=x^{x^2-3} Taking logarithm on both the sides, we obtain
\log u =\log \left(x^{x^2-3}\right)

=\left(x^2-3\right) \log x

Differentiating both sides with respect to x, we obtain

\frac{1}{u} \frac{d u}{d x}=\log x \cdot \frac{d}{d x}\left(x^2-3\right)+\left(x^2-3\right) \cdot \frac{d}{d x}(\log x)

\Rightarrow \frac{1}{u} \frac{d u}{d x}=\log x \cdot 2 x+\left(x^2-3\right) \cdot \frac{1}{x}

\Rightarrow \frac{d u}{d x}=x^{x^2-3}\left[\frac{x^2-3}{x}+2 x \log x\right]

Now, v=(x-3)^{x^2}

Taking logarithm on both the sides, we obtain
\log v =\log (x-3)^{x^2}
=x^2 \log (x-3)

Differentiating both sides with respect to x, we obtain

\frac{1}{v} \frac{d v}{d x}=\log (x-3) \cdot \frac{d}{d x}\left(x^2\right)+\left(x^2\right) \cdot \frac{d}{d x}[\log (x-3)]

\Rightarrow \frac{1}{v} \frac{d v}{d x}=\log (x-3) \cdot 2 x+x^2 \cdot \frac{1}{x-3} \cdot \frac{d}{d x}(x-3)

\Rightarrow \frac{d v}{d x}=v\left[2 x \log (x-3)+\frac{x^2}{x-3} \cdot 1\right]

\Rightarrow \frac{d v}{d x}=(x-3)^{x^2}\left[\frac{x^2}{x-3}+2 x \log (x-3)\right]

From (1), (2), and (3), we obtain

\frac{d y}{d x}=x^{x^2-3}\left[\frac{x^2-3}{x}+2 x \log x\right]+(x-3)^{x^2}\left[\frac{x^2}{x-3}+2 x \log (x-3)\right]

Question 12: Find \frac{d y}{d x}, if y=12(1-\cos t), x=10(t-\sin t), \frac{-\pi}{2}<t<\frac{\pi}{2}

Solution: The given function is y=12(1-\cos t), x=10(t-\sin t)

Hence,

\frac{d x}{d t} =\frac{d}{d t}[10(t-\sin t)]

=10 \cdot \frac{d}{d t}(t-\sin t)

=10(1-\cos t)

\frac{d y}{d t} =\frac{d}{d t}[12(1-\cos t)]

=12 \cdot \frac{d}{d t}(1-\cos t)

=12 \cdot[0-(-\sin t)]

=12 \sin t

Therefore,

\frac{d y}{d x} & =\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{12 \sin t}{10(1-\cos t)}

=\frac{12 \cdot 2 \sin \frac{t}{2} \cdot \cos \frac{t}{2}}{10 \cdot 2 \sin ^2 \frac{t}{2}}

=\frac{6}{5} \cot \frac{t}{2}

Question 13: Find \frac{d y}{d x}, if y=\sin ^{-1} x+\sin ^{-1} \sqrt{1-x^2},0 \leq x \leq 1.

Solution: The given function is y=\sin ^{-1} x+\sin ^{-1} \sqrt{1-x^2} --(i)

Let I=\sin^{-1}\sqrt{1-x^2}

Let x =\cos z\Rightarrow z=\cos^{-1}x

I=\sin^{-1}(\sqrt{1-\cos^2z})

=\sin^{-1}\sin z =z

\Rightarrow I=\cos^{-1}x

Hence,

From (i)

y=\sin^{-1}x+\cos^{-1}x = \frac{\pi}{2}

Differentiate with respect to x

\frac{dy}{dx}= 0

Question 14: If x \sqrt{1+y}+y \sqrt{1+x}=0 for -1<x<1, prove that \frac{d y}{d x}=-\frac{1}{(1+x)^2}.

Solution:The given function is x \sqrt{1+y}+y \sqrt{1+x}=0

\Rightarrow x \sqrt{1+y}=-y \sqrt{1+x}

Squaring both sides, we obtain

x^2(1+y)=y^2(1+x)

\Rightarrow x^2+x^2 y=y^2+x y^2

\Rightarrow x^2-y^2=x y^2-x^2 y

\Rightarrow x^2-y^2=x y(y-x)

\Rightarrow (x+y)(x-y)=x y(y-x)

\Rightarrow x+y=-x y

\Rightarrow (1+x) y=-x

\Rightarrow y=\frac{-x}{(1+x)}

Differentiating both sides with respect to x, we obtain

\frac{d y}{d x} =-\left[\frac{(1+x) \frac{d}{d x}(x)-(x) \cdot \frac{d}{d x}(1+x)}{(1+x)^2}\right]

=-\frac{(1+x)-x}{(1+x)^2}

=-\frac{1}{(1+x)^2}

Hence proved.

Question 15:If (x-a)^2+(y-b)^2=c^2 for c>0, prove that \frac{\left[1+\left(\frac{d y}{d x}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2 y}{d x^2}}

is a constant independent of a and b.

Solution:The given function is (x-a)^2+(y-b)^2=c^2

Differentiating both sides with respect to x, we obtain

\frac{d}{d x}\left[(x-a)^2\right]+\frac{d}{d x}\left[(y-b)^2\right]=\frac{d}{d x}\left(c^2\right)

\Rightarrow 2(x-a) \cdot \frac{d}{d x}(x-a)+2(y-b) \cdot \frac{d}{d x}(y-b)=0

\Rightarrow 2(x-a) \cdot 1+2(y-b) \cdot \frac{d y}{d x}=0

\Rightarrow \frac{d y}{d x}=\frac{-(x-a)}{y-b}

Therefore,

\frac{d^2 y}{d x^2} =\frac{d}{d x}\left[\frac{-(x-a)}{y-b}\right]

=-\left[\frac{(y-b) \cdot \frac{d}{d x}(x-a)-(x-a) \cdot \frac{d}{d x}(y-b)}{(y-b)^2}\right]

=-\left[\frac{(y-b)-(x-a) \cdot \frac{d y}{d x}}{(y-b)^2}\right]

=-\left[\frac{(y-b)-(x-a) \cdot\left\{\frac{-(x-a)}{y-b}\right\}}{(y-b)^2}\right] \quad[\text { Using (1)] }

=-\left[\frac{\left.(y-b)^2+(x-a)^2\right]}{(y-b)^3}\right]

Hence,

\frac{\left[1+\left(\frac{d y}{d x}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2 y}{d x^2}}=\frac{\left[1+\frac{(x  a)^2}{(y-b)^2}\right]^{\frac{3}{2}}}{-\left[\frac{(y-b)^2+(x-a)^2}{(y-b)^3}\right]}

=\frac{\left[\frac{(y-b)^2+(x-a)^2}{(y-b)^2}\right]^{\frac{3}{2}}}{-\left[\frac{(y-b)^2+(x-a)^2}{(y-b)^3}\right]}

=\frac{\left[\frac{c^2}{(y-b)^2}\right]^{\frac{3}{2}}}{-\frac{c^2}{(y-b)^3}}

=\frac{\frac{c^3}{(y-b)^3}}{-\frac{c^2}{(y-b)^3}}

=-c

-c is a constant and is independent of a and b.

Hence proved.

Question 16: If \cos y=x \cos (a+y) with \cos a \neq \pm 1, prove that \frac{d y}{d x}=\frac{\cos ^2(a+y)}{\sin a}.
Solution: The given function is \cos y=x \cos (a+y)

Therefore,

\Rightarrow \frac{d}{d x}[\cos y]=\frac{d}{d x}[x \cos (a+y)]

\Rightarrow-\sin y \frac{d y}{d x}=\cos (a+y) \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}[\cos (a+y)]

\Rightarrow-\sin y \frac{d y}{d x}=\cos (a+y)+x \cdot[-\sin (a+y)] \frac{d y}{d x}

\Rightarrow[x \sin (a+y)-\sin y] \frac{d y}{d x}=\cos (a+y) ---(i)

Since, \cos y=x\cos(a+y)

\Rightarrow x=\frac{\cos y}{\cos(a+y)}

Then, equation (1) becomes,

{\left[\frac{\cos y}{\cos (a+y)} \cdot \sin (a+y)-\sin y\right] \frac{d y}{d x}=\cos (a+y)}

\Rightarrow[\cos y \cdot \sin (a+y)-\sin y \cdot \cos (a+y)] \cdot \frac{d y}{d x}=\cos ^2(a+y)

\Rightarrow \sin (a+y-y) \frac{d y}{d x}=\cos ^2(a+y)

\Rightarrow \frac{d y}{d x}=\frac{\cos ^2(a+y)}{\sin a}

Hence proved.

Question 17: If x=a(\cos t+t \sin t) and y=a(\sin t-t \cos t), find \frac{d^2 y}{d x^2}.

Solution: The given function is x=a(\cos t+t \sin t) and y=a(\sin t-t \cos t) Therefore,

\frac{d x}{d t}=a \cdot \frac{d}{d t}(\cos t+t \sin t)

=a\left[-\sin t+\sin t \cdot \frac{d}{d x}(t)+t \cdot \frac{d}{d t}(\sin t)\right]

=a[-\sin t+\sin t+t \cos t]

=a t \cos t

\frac{d y}{d t}=a \cdot \frac{d}{d t}(\sin t-t \cos t)

=a\left[\cos t-\left\{\cos t \cdot \frac{d}{d t}(t)+t \cdot \frac{d}{d t}(\cos t)\right\}\right]

=a[\cos t-\{\cos t-t \sin t\}]

=a t \sin t

\frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}=\frac{a t \sin t}{a t \cos t}=\tan t

\frac{d^2 y}{d x^2}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}(\tan t)=\sec ^2 t \cdot \frac{d t}{d x}

=\sec ^2 t . \frac{1}{a t \cos t} \quad\left[\frac{d x}{d t}=a t \cos t \Rightarrow \frac{d t}{d x}=\frac{1}{a t \cos t}\right]

=\frac{\sec ^3 t}{a t}, 0<t<\frac{\pi}{2}

Question 18: If f(x)=|x|^3, show that f^{\prime \prime}(x) exists for all real x, and find it.

Solution: It is known that |x|=\left\{\begin{array}{l}x, \text { if } x \geq 0 \\ -x, \text { if } x<0\end{array}\right.

Therefore, when x \geq 0, f(x)=|x|^3=x^3

In this case, f^{\prime}(x)=3 x^2 and hence, f^{\prime \prime}(x)=6 x

When x<0, f(x)=|x|^3=(-x)^3=-x^3

In this case, f^{\prime}(x)=-3 x^2 and hence, f^{\prime \prime}(x)=-6 x

Thus, for f(x)=|x|^3, f^{\prime \prime}(x) exists for all real x and is given by,

f^{\prime \prime}(x)=\left\{\begin{array}{l} 6 x, \text { if } x \geq 0 \\ -6 x, \text { if } x<0 \end{array}\right.

Question 19: Using mathematical induction prove that \frac{d}{d x}\left(x^n\right)=n x^{n-1} for all positive integers n.

Solution:To prove: P(n): \frac{d}{d x}\left(x^n\right)=n x^{n-1} for all positive integers n.

For n=1,

P(1): \frac{d}{d x}(x)=1=1 \cdot x^{1-1}

Therefore, P(n) is true for n=1.

Let P(k) is true for some positive integer k.

That is, P(k): \frac{d}{d x}\left(x^k\right)=k x^{k-1}--(i)

It has to be proved that P(k+1) is also true.

P(k+1):\frac{d}{dx}x^{k+1}=(k+1)x^k

Taking, L.H.S.

\frac{d}{d x}\left(x^{k+1}\right) =\frac{d}{d x}\left(x \cdot x^k\right)

=x^k \cdot \frac{d}{d x}(x)+x \cdot \frac{d}{d x}\left(x^k\right) \quad \text { [By applying product rule] }

=x^k \cdot 1+x \cdot k \cdot x^{k-1} [\text{ from (i)}]

\frac{d}{d x}\left(x^{k+1}\right) =x^k+k x^k

=(k+1) \cdot x^k

=(k+1) \cdot x^{(k+1)-1}

Thus, P(k+1) is true whenever P(k) is true.

Therefore, by the principle of mathematical induction, the statement P(n) is true for every positive integer n.

Hence, proved.

Question 20: Using the fact that \sin (A+B)=\sin A \cos B+\cos A \sin B and the differentiation, obtain the sum formula for cosines.

Solution: Given, \sin (A+B)=\sin A \cos B+\cos A \sin B

Differentiating both sides with respect to x, we obtain

\frac{d}{d x}[\sin (A+B)]=\frac{d}{d x}(\sin A \cos B)+\frac{d}{d x}(\cos A \sin B)

\Rightarrow \cos (A+B) \cdot \frac{d}{d x}(A+B)=\cos B \cdot \frac{d}{d x}(\sin A)+\sin A \cdot \frac{d}{d x}(\cos B)+\sin B \cdot \frac{d}{d x}(\cos A)+\cos A \cdot \frac{d}{d x}(\sin B)

\Rightarrow \cos (A+B) \cdot \frac{d}{d x}(A+B)=\cos B \cdot \cos A \frac{d A}{d x}+\sin A(-\sin B) \frac{d B}{d x}+\sin B(-\sin A) \cdot \frac{d A}{d x}+\cos A \cos B \frac{d B}{d x}

\Rightarrow \cos (A+B) \cdot\left[\frac{d A}{d x}+\frac{d B}{d x}\right]=(\cos A \cos B-\sin A \sin B) \cdot\left[\frac{d A}{d x}+\frac{d B}{d x}\right]

\Rightarrow \cos (A+B)=\cos A \cos B-\sin A \sin B

Question 21: Does there exist a function which is continuous everywhere but not differentiable at exactly two points? Justify your answer?

Solution: Consider, \quad y= \begin{cases}|x| & -\infty<x \leq 1 \\ 2-x & 1 \leq x \leq \infty\end{cases}

It can be seen from the above graph that the given function is continuous everywhere but not differentiable at exactly two points which are 0 and 1.

Question 22: y=\left|\begin{array}{ccc} f(x) & g(x) & h(x) \\ l & m & n \\ a & b & c \end{array}\right| \text {, prove that } \frac{d y}{d x}=\left|\begin{array}{ccc} f^{\prime}(x) & g^{\prime}(x) & h^{\prime}(x) \\ l & m & n \\ a & b & c \end{array}\right|

Solution: y =\begin{vmatrix} f(x) & g(x) & h(x)\\ l & m & n \\ a & b & c\end{vmatrix}

Differentiate with respect to x

\frac{dy}{dx}=\begin{vmatrix} \frac{d}{dx}f(x) & \frac{d}{dx}g(x) & \frac{d}{dx}h(x) \\ l & m & n\\ a & b & c\end{vmatrix}+\begin{vmatrix} f(x) & g(x) & h(x) \\\frac{d}{dx}l & \frac{d}{dx}m & \frac{d}{dx}n \\ a & b & c\end{vmatrix}+\begin{vmatrix} f(x) & g(x) & h(x)\\l & m & n\\\frac{d}{dx}a & \frac{d}{dx}b & \frac{d}{dx}c\end{vmatrix}

=\begin{vmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n\\ a & b & c\end{vmatrix}+\begin{vmatrix} f(x) & g(x) & h(x) \\ 0 & 0 & 0 \\ a & b & c\end{vmatrix}+\begin{vmatrix} f(x) & g(x) & h(x)\\l & m & n \\ 0 & 0 & 0\end{vmatrix}

=\begin{vmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n\\ a & b & c\end{vmatrix}+0+0
=\begin{vmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n\\ a & b & c\end{vmatrix}

Hence proved

Question 23: If y=e^{\cos^{-1}x},-1\leq x\leq 1, Show that (1-x^2)\frac{d^2y}{dx^2}-x\frac{dy}{dx}-a^2y=0.

Solution: y=e^{a\cos^{-1}x}

Differentiate with respect to x

\frac{dy}{dx}=\frac{d}{dx}e^{a\cos^{-1}x}

\Rightarrow \frac{dy}{dx}=e^{a\cos^{-1}x}.\frac{d}{dx}a\cos^{-1}x

\Rightarrow \frac{dy}{dx}=e^{a\cos^{-1}x}a.\frac{1}{\sqrt{1-x^2}}

Multiply by \sqrt{1-x^2} both side

\sqrt{1-x^2}\frac{dy}{dx}= ae^{a\cos{-1}x}

\sqrt{1-x^2}\frac{dy}{dx}= ay

Squaring both side

(\sqrt{1-x^2}\frac{dy}{dx})^2=(ay)^2

(1-x^2)(\frac{dy}{dx})^2=a^2y^2

Again differentiate with respect to x

\frac{d}{dx}(1-x^2)(\frac{dy}{dx})^2=a^2\frac{d}{dx}y^2

\Rightarrow (1-x^2)2\frac{dy}{dx}\frac{d^2y}{dx^2}+(\frac{dy}{dx})^2(-2x)=a^22y\frac{dy}{dx}

Divide by 2\frac{dy}{dx} both side

(1-x^2)\frac{d^2y}{dx^2}-x\frac{dy}{dx}=a^2y

(1-x^2)\frac{d^2y}{dx^2}-x\frac{dy}{dx}-a^2y=0

Leave a Comment