Class 12 ncert solution math exercise 5.2

Exercise 5.2(Continuity and differentiability)

Differentiate the functions with respect to x in Exercises 1 to 8.(Class 12 ncert solution math exercise 5.2)

Question 1:-  \sin(x^2+5)

Solution: \sin(x^2+5)

Differentiate w.r.t. x

\frac{d}{dx} \sin(x^2+5)

= \cos(x^2+5)\frac{d}{dx}(x^2+5)

= \cos(x^2+5).2x

= 2x.\cos(x^2+5)

Question 2:- \cos(\sin x)

Solution:- \cos(\sin x)

Differentiate w.r.t. x

\frac{d}{dx}\cos(\sin x) = -\sin(\sin x)\frac{d}{dx}\sin x

= -\sin(\sin x) .\cos x

= -\cos x.\sin(\sin x)

Question 3:- \sin(ax+b)

Solution:- \sin(ax+b)

Differentiate w.r.t. x

\frac{d}{dx}\sin(ax+b) = \cos(ax+b).\frac{d}{dx}(ax+b)

= \cos(ax+b).(a.1+0)

= a\cos(ax+b)

Question 4:- \sec(\tan(\sqrt{x}))

Solution:- \sec(\tan(\sqrt{x}))

Differentiate with respect to x

\frac{d}{dx}\sec(\tan(\sqrt{x}))

= \sec(\tan(\sqrt{x})\tan(\tan(\sqrt{x}))\frac{d}{dx}\tan(\sqrt{x})

= \sec(\tan(\sqrt{x})\tan(\tan(\sqrt{x}))\sec^2(\sqrt{x})\frac{d}{dx}x^{1/2}

= \sec(\tan(\sqrt{x})\tan(\tan(\sqrt{x}))\sec^2(\sqrt{x})\frac{1}{2\sqrt{x}}

= \frac{1}{2\sqrt{x}}\sec^2(\sqrt{x}) \sec(\tan(\sqrt{x})\tan(\tan(\sqrt{x}))

Question 5:-  \frac{\sin(ax+b)}{\cos(cx+d)}

Solution: \frac{\sin(ax+b)}{\cos(cx+d)}

Differentiate with respect to x

\frac{d}{dx}\left(\frac{\sin(ax+b)}{\cos(cx+d)}\right)

= \frac{\cos(cx+d).\frac{d}{dx}\sin(ax+b) - \sin(ax+b)\cos(cx+d)}{\cos^2(cx+d)}

= \frac{\cos(cx+d)\cos(ax+b)\frac{d}{dx}(ax+b)-\sin(ax+b)[-\sin(cx+d)].\frac{d}{dx}(cx+d)}{\cos^2(cx+d)}

= \frac{\cos(cx+d)\cos(ax+b).a-\sin(ax+b)[-\sin(cx+d)].c}{\cos^2(cx+d)}

= \frac{a.\cos(cx+d).\cos(ax+b)}{\cos^2(cx+d)}+\frac{c.\sin(ax+b).\sin(cx+d)}{\cos^2(cx+d)}

= a.\cos(ax+b).\sec(cx+d)+ c.\cos(ax+b).\tan(cx+d).\sec(cx+d)

Question 6:- \cos x^3.\sin^2(x^5)

Solution: \cos x^3.\sin^2(x^5)

Differentiate with respect to x

\frac{d}{dx}\cos x^3.\sin^2(x^5)

= \cos x^3\frac{d}{dx}\sin^2(x^5)+ \sin^2(x^5)\frac{d}{dx}\cos x^3

= \cos x^3.2\sin x^5\frac{d}{dx}\sin x^5+\sin^2(x^5).[-\sin x^3].\frac{d}{dx}x^3

= \cos x^3.2\sin x^5\cos x^5\frac{d}{dx}x^5 - \sin^2(x^5)\sin x^3.3x^2

= = \cos x^3.2\sin x^5\cos x^5.5x^4 - \sin^2(x^5)\sin x^3.3x^2

= 10x^4\sin x^5.\cos x^5.\cos x^3-3x^2\sin x^3.\sin^2(x^5)

Question 7:- 2\sqrt{\cot(x^2) }

Solution: 2\sqrt{\cot(x^2) }

Differentiate with respect to x

\frac{d}{dx}2\sqrt{\cot(x^2) }

= 2\frac{d}{dx}[\cot(x^2)]^{1/2}

= 2.\frac{1}{2[\cot(x^2)]^{1/2}}\frac{d}{dx}\cot(x^2)

= \frac{-\operatorname{cosec^2(x^2)}}{\sqrt{\cot(x^2)}}\frac{d}{dx}x^2

= \frac{-\operatorname{cosec^2(x^2)}}{\sqrt{\cot(x^2)}}.2x

= \frac{-2x}{\sin^2x^2.\sqrt{\cot(x^2)}}

= \frac{-2x}{\sin x^2.\sin x^2\sqrt{\frac{\cos x^2}{\sin x^2}}}

= \frac{-2x}{\sin x^2\sqrt{\sin x^2.\cos x^2}}

= \frac{-2\sqrt{2}x}{\sin x^2\sqrt{2\sin x^2\cos x^2}}

= \frac{-2\sqrt{2}x}{\sin x^2\sqrt{\sin 2x^2}}

Question 8:- \cos(\sqrt{x})

 Solution: \cos(\sqrt{x})

Differentiate with respect to x

\frac{d}{dx}\cos(\sqrt{x})

= -\sin(\sqrt{x})\frac{d}{dx}x^{1/2}

= -\sin(\sqrt{x})\frac{1}{2\sqrt{x}}

= -\frac{\sin{x}}{2\sqrt{x}}

Question 9: Prove that the function f given by f(x)=|x-1|, x \in \mathbf{R} is not differentiable at x=1.

Solution: Given, f(x)=|x-1|, x \in \mathbf{R}

It is known that a function f is differentiable at a point x=c in

its domain if both
\displaystyle \lim _{h \rightarrow 0^{-}} \frac{f(c)-f(c-h)}{h} and \displaystyle\lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h} are finite and equal.

To check the differentiability of the given function at x=1,

LHD =\displaystyle \lim _{h \rightarrow 0^{-}} \frac{f(1)-f(1-h)}{h} =\lim _{h \rightarrow 0^{-}} \frac{f|1-1|-|1-h-1|}{h}

=\displaystyle \lim _{h \rightarrow 0^{-}} \frac{0-|h|}{h}

=\displaystyle \lim _{h \rightarrow 0^{-}} \frac{-h}{h} \quad(h<0 \Rightarrow|h|=-h)

=-1

RHD = \displaystyle \lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h} =\lim _{h \rightarrow 0^{+}} \frac{f|1+h-1|-|1-1|}{h}

=\displaystyle \lim _{h \rightarrow 0^{+}} \frac{|h|-0}{h}

=\displaystyle \lim _{h \rightarrow 0^{+}} \frac{h}{h} \quad(h>0 \Rightarrow|h|=h)

=1

Since LHD and RHD at x=1 are not equal,

Therefore, f is not differentiable at x=1.

Question 10: Prove that the greatest integer function defined by f(x)=[x], 0<x<3 is not differentiable at x=1 and x=2

Solution:  Given, f(x)=[x], 0<x<3

It is known that a function f is differentiable at a point x=c in its domain if both \lim _{h \rightarrow 0^{-}} \frac{f(c)-f(c-h)}{h} and \lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h} are finite and equal.
At x=1,

Consider the LHD at x=1

\displaystyle \lim _{h \rightarrow 0^{-}} \frac{f(1)-f(1-h)}{h} =\lim _{h \rightarrow 0^{-}} \frac{[1]-[1-h]}{h}

=\displaystyle \lim _{h \rightarrow 0^{-}} \frac{1-0}{h}

=\displaystyle \lim _{h \rightarrow 0^{-}} \frac{1}{h}

=\infty

Consider RHD at x=1

\displaystyle \lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h} =\lim _{h \rightarrow 0^{+}} \frac{[1+h]-[1]}{h}

=\lim _{h \rightarrow 0^{+}} \frac{1-1}{h}

=\lim _{h \rightarrow 0^{+}} 0

=0

Since LHD \neq RHD at x=1

Hence, f is not differentiable at x=1.

To check the differentiability of the given function at x=2,
Consider LHD at x=2

\displaystyle \lim _{h \rightarrow 0^{-}} \frac{f(2)-f(2-h)}{h} =\lim _{h \rightarrow 0^{-}} \frac{[2]-[2-h]}{h}

=\displaystyle \lim _{h \rightarrow 0^{-}} \frac{2-1}{h}

=\displaystyle \lim _{h \rightarrow 0^{-}} \frac{1}{h}

=\infty

Now, consider RHD at x=2

\displaystyle \lim _{h \rightarrow 0^{+}} \frac{f(2+h)-f(2)}{h} =\lim _{h \rightarrow 0^{+}} \frac{[2+h]-[2]}{h}

=\lim _{h \rightarrow 0^{+}} \frac{2-2}{h}

=\displaystyle \lim _{h \rightarrow 0^{+}} 0

=0

Since, LHD \neq RHD at x=2

Hence, f is not differentiable at x=2.


 

Class 12 relation and functions multiple choice

Leave a Comment