Using the principal values of the inverse trigonometric functions

Question 5:- Using the principal values of the inverse trigonometric functions the sum of the maximum and the minimum values of  16((\sec^{-1} x)^2 + (\operatorname{cosec}^{-1} x)^2) is :

(1) 24 π²             (2) 18 π²

(3) 31 π²             (4) 22 π²                    [JEE 22 JAN 2025]

Answer :- (4) 22 π²  

Explanation:- The principal values of the inverse trigonometric functions

(\sec^{-1} x)^2 = z \in [0, \pi] - \pi/2

Since, \sec^{-1} x + \operatorname{cosec}^{-1} x = \pi/2

(\operatorname{cosec}^{-1} x)^2 = \pi/2 - z

16((\sec^{-1} x)^2 + (\operatorname{cosec}^{-1} x)^2)

= 16[z² + (π/2 – z)²]

= 16[z² + π²/4 + z² – π z]

=  16[2 z² – π z + π²/4]

Let 16((\sec^{-1} x)^2 + (\operatorname{cosec}^{-1} x)^2) = A

Max Val of \sec^{-1} x = \pi = z

Max value of A = 16[(π)² + (π/2 – π)²]

= 16[π² + π²/4] = 16(5π²/4)

= 20 π²

Again, A =   16[2 z² – 2π z + π²/4]

Now d.w.r.t. z

\dfrac{dA}{dz} = 16[4z - \pi]

For max and min \dfrac{dA}{dz} = 0

So, z = π/4

Again d.w.r.t. z

\dfrac{d^2A}{dz^2} = 64 >0

Hence, A is min when z = π/4

min value of A = 16[(π/4)² + (π/2 – π/4)²]

=  16[π²/16 + π²/16]

= 2π²

The sum of maximum and minimum value of 16((\sec^{-1} x)^2 + (\operatorname{cosec}^{-1} x)^2) is

= 20 π² + 2 π²

 = 22 π²

Question 2:- Let f : R → R be a twice differentiable function such that f(x + y) = f(x) f(y) for all x, y ∈ R. If f'(0) = 4a and f satisfies f”(x) – 3a f'(x) – f(x) = 0, a > 0, then the area of the region

R = {(x, y) | 0 ≤ y ≤ f(ax), 0 ≤ x ≤ 2} is :

(i) e^2 - 1              (ii) e^4 + 1

(iii) e^4 - 1              (iv) e^2 + 1               [JEE 22 JAN 2025]

Solution:- See full solution

Question 3:- Let the triangle PQR be the image of the triangle with vertices (1, 3), (3, 1) and (2, 4) in the line x + 2y = 2. If the centroid of ΔPQR is the point (α, β), then 15(α – β) is equal to :

(1) 24               (2) 19

(3) 21               (4) 22                                  [JEE 22 JAN 2025]

Answer:- See full answer

Question 4:- Let Z_1, Z_2 and Z_3 be three complex numbers on the circle |Z| = 1 with \arg(Z_1) = \dfrac{-\pi}{4},\arg(Z_2) = 0 and \arg(Z_3) = \dfrac{\pi}{4}. If |Z_1.\bar{Z_2} + Z_2.\bar{Z_3} + Z_3.\bar{Z_1}|^2 = \alpha + \beta\sqrt{2}, \alpha,\beta \in Z, then the value of α² + β² is :

(1) 24                (2) 41

(3) 31                (4) 29                      [JEE 22 JAN 2025]

Answer : See full Answer

 

Leave a Comment