A store has been selling calculators at Rs 350 each

Q 3:- A store has been selling calculators at Rs 350 each. A market survey indicates that a reduction in price (p) of calculator increases the number of units (x) sold. The relation between the price and quantity sold is given by the demand function p = 450 - \frac{1}{2} x.                       [CBSE  2024]

A store has been selling calculators at Rs 350 each. A market survey indicates that a reduction in price (p) of calculator increases the number of units (x) sold.

Based on the above information, answer the following questions:

(i) Determine the number of units (x) that should be sold to maximise the revenue R(x) = xp(x). Also, verify result.                                   (2)

(ii) What rebate in price of calculator should the store give to maximise the revenue ?                 (2)

Solution:- (i) Given, R(x) = xp(x)

R(x) = x(450 - \frac{1}{2} x).

R(x) = 450 x - \frac{1}{2} x^2. .  . (i)

Now differentiate the function with respect to x

\dfrac{d}{dx} R(x) = 450 - \dfrac{1}{2}.2x

\dfrac{d}{dx} R(x) = 450 - x  .  .  . (ii)

For maxima and minima \dfrac{d}{dx} R(x) = 0

450 – x = 0

⇒ x = 450

Again differentiate with respect to x

\dfrac{d^2}{dx^2}R(x) = -1 < 0

Thus, R(x) is maximum when x = 450 units

(ii) Price of calculator when x = 450 units

p(x) = 450 - \frac{1}{2} x

p(450) = 450 - \dfrac{1}{2}.450

p(450) = 450 - 225= 225

The rebate in price of calculator should the store give to maximise the revenue

= 350 – 225 = Rs 125

Q 1:- An instructor at the astronomical centre shows three among the brightest stars in a particular constellation. Assume that the telescope is located at O(0, 0, 0) and the three stars have their locations at the points D, A and V having position vectors 2\hat{i} + 3\hat{j} + 4\hat{k}, 7\hat{i} + 5\hat{j} + 8\hat{k} and -3\hat{i} + 7\hat{j} + 11\hat{k} respectively.

Based on the above information, answer the following question:

(i) How far is the star V from star A ?                         (1)

(ii) Find a unit vector in the direction of \vec{DA}.            (1)

(iii)(a) Find the measure of ∠VDA .                    (2)

                 OR

(iii) (b) What is the projection of vector \vec{DV} on vector \vec{DA} ?               (2)

Solution :- See full solution

Q 2: Rohit Jaspreet and Alia appeared for an interview for three vacancies in the same post. The probability of Rohit’s selection is 1/5, Jaspreet’s selection is 1/3 and Alia’s selection is 1/4. The event of selection is independent of each other.                 [CBSE  2024]

Based on the above information, answer the following question :

(i) What is the probability that at least one of them is selected ?                (1)

(ii) Find P(G/\overline{H}) where G is the event of Jaspreet’s selection and \bar{H} denotes the event that Rohit is not selected.                  (1)

(iii) Find the probability that exactly one of them is selected.                      (2)

OR

(iii) (b) Find the probability that exactly two of them are selected.          (2)

Solution:- See full solution


Case Study

Leave a Comment