Class 10 Case based problem of Chapter 5 A.P. 2

Chapter 5:Arithmetic Progressions

Class 10 Case based problem of Chapter 5 A.P. 1

Class 10 Case based problem of Chapter 5 A.P. 2

Case Based :4

           Sumit’s father had to undergo knee surgery as he was suffering from lot of pain and unable to walk properly. The physiotheropist asked him to return to his jogging program slowly. He suggested jogging for 10 minutes daily for the first week and thereafter increase the jogging time by 6 minutes.

Class 10 Case based problem of Chapter 5 A.P.

(A) What will be his jogging time after 8 weeks ?

(a) 46 minutes                 (b) 52 minutes

(c) 58 minutes                  (d) 64 minutes

(B) In which week will his jogging time be 70 minutes per day ?

(a) 8^{th} week           (b) 10^{th} week

(c) 11^{th} week           (d) 16^{th} week

(C) Which of the following cannot be the n^{th} term of an A.P. ?

(a) 5 + n                              (b) 2n + 3

(c) 5n – 4                             (d) 2n^2 + 7

(D) The value of k so that k^2 + 4k + 8, 2k^2 + 3k + 6, 3k^2 + 4k + 4 are the three consecutive terms of an A.P. is:

(a) 0                                     (b) -1

(c) 1                                      (d) 2

(E) Which term of the A.P. : 53, 48, 43,  . . . is the first negative term ?

(a) 10^{th}                    (b) 12^{th}

(c) 14^{th}                     (d) 16^{th}

Solution:

(A) Answer (b) 52 minutes

Explanation: A.P. 10, 16, 22, . . . 

a = 1, d = 6

a_8 = a + 7d

= 10 + 7\times 6

= 10 + 42

= 52 minutes

(B) Answer (c) 11^{th} week

Explanation: a_n = 70 minutes

a_n = a + (n-1)d

\Rightarrow 70 = 10 + (n-1)\times 6

\Rightarrow 60 = (n-1)\times 6

\Rightarrow 10 = n-1

\Rightarrow n = 11

Jogging time will be 70 minutes = 11^{th} week

(C) Answer (d) 2n^2+7.

Explanation: n^{th} term of any A.P. can not be in quadratic form

Hence, 2n^2+7 cannot be the n^{th} term of A.P.

(D) Answer (a) 0

Explanation: Since, k^2 + 4k + 8, 2k^2 + 3k + 6, 3k^2 + 4k + 4 are in A.P.

So,  (2 k^2 + 3k + 6) - (k^2 + 4k + 8) = (3k^2 + 4k + 4) - (2k^2 + 3k + 6)

\Rightarrow 2k^2 + 3k + 6- k^2 - 4k -8 = 3k^2 + 4k +4 -2k^2 - 3k - 6

\Rightarrow k^2 - k -2 = k^2 + k - 2

\Rightarrow -2 k = 0

\Rightarrow k = 0

(E) Answer (b) 12^{th}

Explanation: A.P. : 53, 48, 43,  . . . 

a = 53, d = 48 – 53 = -5

Then, a_n < 0

a + (n-1)d < 0

\Rightarrow 53 + (n-1)\times -5 < 0

\Rightarrow (n-1)\times (-5) < -53

\Rightarrow n-1 > \frac{53}{5}

\Rightarrow n > 10.6 + 1

\Rightarrow n > 11.6

Hence, n = 12

Therefore, 12^{th} term of given A.P. is the first negative term.

Case Based : 5

Kaashvi has a piggy bank made of clay when she has been saving part of her pocket money . She saves ₹ 12 in the first month, ₹ 15 in the second month, ₹ 18 in the third month and continues to save in this manner.

Class 10 Case based problem of Chapter 5 A.P.

(A) Which of the following is true about the monthly saving of Kaashvi ?

(a) It does not form an A.P.

(b) It forms an A.P. with a = 12, d = 3

(c) It forms on A.P. with a = 12, d = 6

(d) It forms an A.P. with a = 12, d = -3

(B) In which month will Kaashvi be able to save ₹ 72 ?

(a) 18^{th}             (b) 20^{th}

(c) 21^{th}              (d) 22^{nd}

(C) How much amount did Kaashvi save in the 13^{th} month ?

(a) ₹ 57                       (b) ₹ 54

(c) ₹ 51                        (d) ₹ 48

(D) The third term of an A.P. is 1 and the sixth term is -11. The 15^{th} term of the A.P. is :

(a) -47                            (b) -51

(c) -55                            (d) -59

(E) The ratio of the 7^{th} to the 3^{rd} terms of an A.P. is 12 : 5. Then the ratio of its 13^{th} to 4^{th} terms is :

(a) 3 : 10                        (b) 10 : 3

(c) 10 : 5                         (d) 3 : 8

Solution:

(A) Answer (b) It forms an A.P. with a = 12, d = 3

Explanation: As the monthly savings of Kaashvi are ₹ 12, 15, 18 .  .  .

They form an A.P. with a = 12 and d = 3.

(B) Answer (c) 21^{st}

Explanation: a_n =72, a = 12, d = 3

a_n = a + (n-1)d

\Rightarrow 72 = 12 + (n-1)\times 3

\Rightarrow 60 = (n-1)\times 3

\Rightarrow 20 = n - 1

\Rightarrow n = 21

Therefore, n = 21

(C) Answer (d) ₹ 48

Explanation: n = 13, a = 12, d = 3

a_n = a + (n-1)\times d

\Rightarrow a_{13} = 12 + (13 - 1)\times 3

\Rightarrow a_{13} = 12 + 36

= 48

Kaashvi will save in 13^{th} month = ₹ 48

(D) Answer (a) -47

Explanation: Given that, a_{3} = 1 and a_{6} = -11

a_{3} = a + 2d = 1 .  .  .  . (i)

a_{6} = a + 5d = -11 . . . . . .(ii)

subtracting (ii) to (i)

(a + 5d) - (a + 2d) = -11 - 1

\Rightarrow a + 5d - a - 2d = -12

\Rightarrow 3d = -12

\Rightarrow d = -4

Putting in equation (i)

a + 2d = 1

\Rightarrow a + 2(-4) = 1

\Rightarrow a - 8 =1

\Rightarrow a = 9

Therefore, a_{15} = a + 14 d

= 9 + 14(-4)

= 9 - 56

= -47

The 15^{th} term of A.P. = -47

(E) Answer (b) 10 : 3

Explanation: Given that a_7:a_3 = 12:5

\dfrac{a_7}{a_3} = \dfrac{12}{5}

\Rightarrow \dfrac{a + 6d}{a + 2d}=\dfrac{12}{5}

\Rightarrow 12a + 24d = 5a + 30d

\Rightarrow 7a = 6d

\Rightarrow d = \frac{7a}{6}

Now,

\dfrac{a_{13}}{a_4} =\dfrac{a + 12d}{a + 3d}

\Rightarrow \dfrac{a_{13}}{a_4} = \dfrac{a + 12\times \frac{7a}{6}}{a + 3\times \frac{7a}{6}}

\Rightarrow \dfrac{a_{13}}{a_4} = \dfrac{a + 14a}{a + \frac{7a}{2}}

\Rightarrow \dfrac{a_{13}}{a_4} = \dfrac{15a}{\frac{9a}{2}}

\Rightarrow \dfrac{a_{13}}{a_4} = \dfrac{30a}{9 a}

\Rightarrow \dfrac{a_{13}}{a_4} = \dfrac{10}{3}

Hence, Ratio between 13^{th} and 4^{th} term = 10 : 3

Case Based : 6

                           Your friend Veer wants to participate in a 200 m race. He can currently run that distance in 51 seconds and with each day of practice. It takes him 2 seconds less. He wants to do in 31 seconds.

Class 10 Case based problem of Chapter 5 A.P.

(A) Which of the following terms are in A.P. for the given situtation ?

(a) 51, 53, 55 . . . .             (b) 51, 49, 47 . . .

(c) -51, -53, -55 . . .           (d) 51, 55, 59 . . .

(B) What is the minimum number of days ?

(a) 10                                   (b) 12

(c) 11                                     (d) 9

(C) Which of the following term is not in the A.P. of the above given situtation.

(a) 41                                   (b) 30

(c) 37                                    (d)  39

(D) If n^{th} term of an A.P. is given by a_n = 2n + 3, Then common difference of an A.P. is

(a) 2                                     (b) 3

(c) 5                                      (d) 1

(E) The value of x, for which 2x, x + 10, 3x + 2 are three consecutive terms of an A.P., is :

(a) 6                                    (b) -6

(c) 18                                   (d) -18

Solution:

(A) Answer (b) 51, 49, 47  .  .  .  .

(B) Answer (c) 11

Explanation: Given A.P.

51, 49, 47  .  .  .  . 31

a = 51, l = 31, d = -2

We know that

a_n = a + (n-1)d

31 = 51 + (n - 1)\times -2

\Rightarrow -20 = (n- 1)\times -2

\Rightarrow n - 1 = 10

\Rightarrow n = 11

The minimum number of days = 11

(C) Answer (b) 30

Explanation: Since, A.P.

51, 49, 47, 45, 43, 41, 39, 37, 35, 33, 31

Every number in the A.P. are odd number and 30 is an even number

Hence, 30 is not any term in the A.P.

(D) Answer (a) 2

Explanation: Given that, n th term of A.P.

a_n = 2 n + 3

a_1 = 2\times 1 +3 = 5

a_2 = 2\times 2 + 3 = 7

Common difference(d) = a_2 - a_1

d = 7 - 5 = 2

(E) Answer (a) 6

Explanation: Given A.P. 2x, x + 10, 3x + 2

common difference(d) = a_2 - a_1 = a_3 - a_2

\Rightarrow (x + 10) - (2x) = (3x + 2) - (x + 10)

\Rightarrow x + 10 - 2x = 3x + 2 - x - 10

\Rightarrow 10 - x = 2x - 8

\Rightarrow 10 + 8 = 2x + x

\Rightarrow 3x = 18

\Rightarrow x = 6

Some other Case Based problem

Pair of Linear equations in two variables

Class 10 Case based problem of Chapter 3 Pair of Linear eq 1

Class 10 Case based problem of Chapter 3 Pair of Linear eq 2

Quadratic Equation

Class 10 Case based problem of Chapter 4 quadratic eq 1

Class 10 Case based problem of Chapter 4 Quadratic eq 2

Gmath.in

 

Leave a Comment