Exercise 8.2 ncert math solution class 12

Exercise 8.2(Application of Integrals)

Chapter 8 Exercise 8.2 ncert math solution class 12

Question 1: Find the area of the circle 4 x^2+4 y^2=9 which is interior to the parabola x^2=4 y.

Solution : The required area is represented by the shaded area OBCDO.

Exercise 8.2 ncert math solution class 12

Solving the given equation of circle 4 x^2+4 y^2=9, and parabola x^2=4 y,

4(4y)+4y^2=9

\Rightarrow 4y^2+16y-9=0

\Rightarrow 4y^2+18y -2y-9=0

\Rightarrow 2y(2y+9)-1(2y+9)=0

\Rightarrow (2y+9)(2y-1)=0

\Rightarrow y =-\frac{9}{2}, \frac{1}{2}

Whent y=\frac{1}{2} then x = \pm\sqrt{2}

we obtain the B Point of intersection as B\left(\sqrt{2}, \frac{1}{2}\right) and D\left(-\sqrt{2}, \frac{1}{2}\right).

Area \mathrm{OBCDO}=2 \times Area \mathrm{OBCO}
We draw BM perpendicular to OA.

Therefore, the coordinates of M are (\sqrt{2}, 0).

Therefore, Area OBCO = Area OMBCO – Area OMBO

=\int_0^{\sqrt{2}} \sqrt{\frac{\left(9-4 x^2\right)}{4}} d x-\int_0^{\sqrt{2}} \sqrt{\frac{\left(x^2\right)}{4}} d x

=\frac{1}{2} \int_0^{\sqrt{2}} \sqrt{9-4 x^2}-\frac{1}{4} \int_0^{\sqrt{2}} x^2 d x

=\frac{1}{4}\left[x \sqrt{9-4 x^2}+\frac{9}{2} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right]_0^{\sqrt{2}}-\frac{1}{4}\left[\frac{x^3}{3}\right]_0^{\sqrt{2}}

=\frac{1}{4}\left[\sqrt{2} \sqrt{9-8}+\frac{9}{2} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right]-\frac{1}{12}(\sqrt{2})^3

=\frac{\sqrt{2}}{4}+\frac{9}{8} \sin ^{-1} \frac{2 \sqrt{2}}{3}-\frac{\sqrt{2}}{6}

=\frac{\sqrt{2}}{12}+\frac{9}{8} \sin ^{-1} \frac{2 \sqrt{2}}{3}

=\frac{1}{2}\left(\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right)

Therefore, the required area OBCDO = 2 \times \frac{1}{2}\left(\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right)

=\left(\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right) units.

Question 2: Find the area bounded by curves (x-1)^2+y^2=1 and x^2+y^2=1.

Solution : The area bounded by curves (x-1)^2+y^2=1 and x^2+y^2=1 is represented by the shaded area OACBO.

Exercise 8.2 ncert math solution class 12

On solving the equations, (x-1)^2+y^2=1 and x^2+y^2=1,

(x-1)^2+1-x^2=1

\Rightarrow x^2+1-2x-x^2=0

\Rightarrow 1-2x=0

\Rightarrow x = \frac{1}{2}

When x= \frac{1}{2} then y= \pm\frac{\sqrt{3}}{2}

we obtain the point of intersection as B\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) and D\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right).

It can be observed that the required area is symmetrical about x-axis.

Area \mathrm{OBCAO}=2 \times Area OCAO

We join A B, which intersects O C at M, such that A M is perpendicular to OC.

The coordinates of M are \left(\frac{1}{2}, 0\right)

Area OCAO = Area OMAO + Area MCAM

= \int_0^{\frac{1}{2}}y_1 dx+\int_{\frac{1}{2}}^1 y_2 dx

=\left[\int_0^{\frac{1}{2}} \sqrt{1-(x-1)^2} d x+\int_{\frac{1}{2}}^1 \sqrt{1-x^2} d x\right]

=\left[\frac{x-1}{2} \sqrt{1-(x-1)^2}+\frac{1}{2} \sin ^{-1}(x-1)\right]_0^{\frac{1}{2}}+\left[\frac{x}{2} \sqrt{1-x^2}+\frac{1}{2} \sin ^{-1} x\right]_0^{\frac{1}{2}}

=\left[\frac{-1}{4} \sqrt{1-\left(-\frac{1}{2}\right)^2}+\frac{1}{2} \sin ^{-1}\left(\frac{1}{2}-1\right)-\frac{1}{2} \sin ^{-1}(-1)\right]+\left[\frac{1}{2} \sin ^{-1}(1)-\frac{-1}{4} \sqrt{1-\left(\frac{1}{2}\right)^2}-\frac{1}{2} \sin ^{-1}\left(\frac{1}{2}\right)\right]

=\left[-\frac{\sqrt{3}}{8}+\frac{1}{2}\left(-\frac{\pi}{6}\right)-\frac{1}{2}\left(-\frac{\pi}{2}\right)\right]+\left[\frac{1}{2}\left(\frac{\pi}{2}\right)-\frac{\sqrt{3}}{8}-\frac{1}{2}\left(\frac{\pi}{6}\right)\right]

=\left[-\frac{\sqrt{3}}{4}-\frac{\pi}{12}+\frac{\pi}{4}+\frac{\pi}{4}-\frac{\pi}{12}\right]

=\left[-\frac{\sqrt{3}}{4}-\frac{\pi}{6}+\frac{\pi}{2}\right]

=\left[\frac{2 \pi}{6}-\frac{\sqrt{3}}{4}\right]

Therefore, required area OBCAO =2 \times\left(\frac{2 \pi}{6}-\frac{\sqrt{3}}{4}\right)

=\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right).

Question 3: Find the area of the region bounded by the curves y=x^2+2, y=x \quad x=0 and x=3.

Solution: The area bounded by the curves:

y=x^2+2, \quad y=x, \quad x=0 \quad \text { and } \quad x=3 .

Exercise 8.2 ncert math solution class 12

Then, Area OCBAO = Area ODBAO – Area ODCO

=\int_0^3\left(x^2+2\right) d x-\int_0^3 x d x

=\left[\frac{x^3}{3}+2 x\right]_0^3-\left[\frac{x^2}{2}\right]_0^3

=[9+6]-\left[\frac{9}{2}\right]=15-\frac{9}{2}=\frac{21}{2} \text { units }

Question 4: Using integration finds the area of the region bounded by the triangle whose vertices are (-1,0),(1,3) and (3,2).

Solution: BL and CM are drawn perpendicular to x-axis.
It can be observed in the given figure that,

Exercise 8.2 ncert math solution class 12

Area (\triangle \mathrm{ACB})=\operatorname{Area}(A L B A)+ Area (BLMCB) – Area (AMCA)

Equation of line segment A B is y-0=\frac{3-0}{1+1}(x+1)

\Rightarrow y=\frac{3}{2}(x+1)

\text { Area (ALBA) }=\int_{-1}^1 \frac{3}{2}(x+1) d x

=\frac{3}{2}\left[\frac{x^2}{2}+x\right]_{-1}^1=\frac{3}{2}\left[\frac{1}{2}+1-\frac{1}{2}+1\right]=3 \text { units }

Equation of line segment BC is y-3=\frac{2-3}{3-1}(x-1)

\Rightarrow y=\frac{1}{2}(-x+7)

\text { Area (BLMCB) }=\int_1^3 \frac{1}{2}(-x+7) d x=\frac{1}{2}\left[-\frac{x^2}{2}+7 x\right]_1^3

=\frac{1}{2}\left[-\frac{9}{2}+21+\frac{1}{2}-7\right]=5 \text { units }

Equation of line segment AC is y-0=\frac{2-0}{3+1}(x+1) \Rightarrow y=\frac{1}{2}(x+1)

Area (AMCA) =\frac{1}{2} \int_{-1}^3(x+1) d x

=\frac{1}{2}\left[\frac{x^2}{2}+x\right]_{-1}^3

=\frac{1}{2}\left[\frac{9}{2}+3-\frac{1}{2}+1\right]=4 units

Therefore, from equation (1), we have

Area (\triangle A B C)=(3+5-4)=4 units

Question 5: Using integration find the area of the triangular region whose sides have the equations y=2 x+1, y=3 x+1 and x=4

Solution: The equations of sides of the triangle are y=2 x+1, y=3 x+1, and x=4.

Exercise 8.2 ncert math solution class 12

Solving y=2 x+1 and y=3 x+1

3x+1=2x+1

\Rightarrow x=0

When x=0 then y=1

Point A(0,1)

Again solving y=2 x+1 and x=4

y=2\times 4+1

\Rightarrow y=9

Point C(4,9)

Again solving y=3x+1 and x=4

y = 3\times 4+1=13

Point B(4,13)

we obtain the vertices of triangle as A(0,1), B(4,13), and C(4,9)

It can be observed that,

Area (\triangle \mathrm{ACB})=\operatorname{Area}(\mathrm{OLBAO})- Area (OLCAO)

=\int_1^4(3 x+1) d x-\int_0^4(2 x+1) d x

=\left[\frac{3 x^2}{2}+x\right]_0^4-\left[\frac{2 x^2}{2}+x\right]_0^4

=(24+4)-(16+4)

=28-20=8 units

Question 6: Smaller area enclosed by the circle x^2+y^2=4 and the line \mathrm{x}+\mathrm{y}=2 is

(A) 2(\pi-2)

(B) (\pi-2)

(C) (2 \pi-1)

(D) 2(\pi+2)

Solution: The correct answer is (B)

The smaller area enclosed by the circle, x^2+y^2=4 and the line, x+y=2, is represented by the shaded area ACBA.

Exercise 8.2 ncert math solution class 12

Area A C B A= Area O A C B O-\operatorname{Area}(\triangle \mathrm{OAB})

=\int_0^{2} \sqrt{4-x^2} d x-\int_0^{2}(2-x) d x

=\left[\frac{x}{2} \sqrt{4-x^2}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_0^2-\left[2 x+\frac{x^2}{2}\right]_0^2

=\left[2 \cdot \frac{\pi}{2}\right]-[4-2]=[\pi-2] units

Thus, the correct answer is (B).

Question 7: Area lying between the curve y^2=4 and y=2 x is
(A) \frac{2}{3}

(B) \frac{1}{3}

(C) \frac{1}{4}

(D) \frac{3}{4}

Solution: The correct answer is (B)

The area lying between the curve, y^2=4 and y=2 x, is represented by the shaded area OBAO.

Exercise 8.2 ncert math solution class 12

The points of intersection of these curves are 0(0,0) and A(1,2).

We draw AC perpendicular to -axis such that the coordinates of C are (1,0).

Area O B A O=\operatorname{Area}(\triangle O C A)- Area (O C A B O)

=\int_0^1 2 x d x-\int_0^1 2 \sqrt{x}

=2\left[\frac{x^2}{2}\right]_0^1-2\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_0^1

=\left|1-\frac{4}{3}\right|=\left|-\frac{1}{3}\right|

=-\frac{1}{3} \text { units }

Thus, the correct answer is (B).

Chapter 8: Application of Integrals Class 12

Exercise 8.1 ncert math solution class 12

Exercise 8.2 ncert math solution class 12

gmath.in

Leave a Comment