Solve differential equation (1+x^2)dy/dx+2xy = 4x^2

Question 2:- Solve the following differential equation :

(1+x^2)\dfrac{dy}{dx} + 2xy = 4x^2.

Solve:- Given, (1+x^2)\dfrac{dy}{dx} + 2xy = 4x^2

\dfrac{dy}{dx} + \dfrac{2x}{(1 + x^2)}y = \dfrac{4x^2}{(1+ x^2)}.

Compare, \dfrac{dy}{dx} + PY  = Q

P = \dfrac{2x}{1 + x^2}, Q = \dfrac{4x^2}{(1+ x^2)}

I.F. = e^{\int pdx}

I.F. = e^{\int \dfrac{2x}{1 + x^2} dx}

Let, 1 + x^2 = t

2x dx = dt

dx = \dfrac{dt}{dx}

I.F. = e^{\int \dfrac{2x}{t} \dfrac{dt}{2x}}

I.F. = e^{\int \dfrac{1}{t} dt}

I.F. = e^{\log t}

I.F. = (1 +x^2)

Solution, y(I.F.) = \int Q (I.F.)

y.(1 + x^2) = \int \dfrac{4x^2}{(1+ x^2}.(1 + x^2)dx

y.(1 + x^2) = \int 4x^2dx

y. (1 + x^2) = \dfrac{4 x^3}{3} + C

y = \dfrac{4 x^3}{3(1 + x^2)} + \dfrac{C}{(1 + x^2)}

Question 1:- Using integration, find the area of the region bounded by the line y = 5x + 2, the x- axis and the ordinates x = -2 and x = 2.                    [CBSE 2025]

Solution:- See full solution

Question 3:-  Solve the differential equation 2(y + 3) - xy\dfrac{dy}{dx} = 0; given y(1) = 2.

Solution:- See full solution

Question 4:- Find the image A‘ of the point A (2, 1, 2) in the line l : \vec{r} = 4\hat{i} + 2\hat{j} + 2\hat{k} + \lamda(\hat{i} - \hat{j} - \hat{k}). Also, find the equation of the line joining AA’. Find the foot of perpendicular from point A on the line l.

Solution:- See full solution

Question 5:- Find the shortest distance between the lines :

\dfrac{x + 1}{2} = \dfrac{y - 1}{1} = \dfrac{z - 9}{-3}

\dfrac{x - 3}{2} = \dfrac{y + 15}{-7} = \dfrac{z - 9}{5}.

Solution:- See full solution

Trigonometry formulae for class 11

class 12 revision of cbse math part-I 2022-2023

 

Leave a Comment